File size: 25,068 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import os
import json
import sys
import shutil
import random
import pickle
import datetime
import argparse
import pathlib as path

import tqdm
import logging

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision
from tensorboardX import SummaryWriter

from model.utils import int_tuple, str_tuple, bool_flag
from model.metrics import iou,MetricAverage,image_acc,image_acc_ignore,binary_image_acc
from model.model import Model
from model.floorplan import FloorPlanDataset,floorplan_collate_fn
from model.loss import *
from model.box_utils import *
from model.utils import *

from ignite.contrib.handlers.tensorboard_logger import *
from ignite.contrib.handlers import *
from ignite.contrib.metrics import *
from ignite.metrics.accuracy import _BaseClassification
from ignite.engine import *
from ignite.handlers import *
from ignite.metrics import *

def parse_args():
    parser = argparse.ArgumentParser()
    
    ''' Dataset '''
    parser.add_argument('--dataset_dir', default='./data', type=str)
    parser.add_argument('--image_size', default='128,128', type=int_tuple)
    parser.add_argument('--input_dim', default=3, type=int)
    parser.add_argument('--with_house', default='0', type=bool_flag)
    parser.add_argument('--pos_dim', default=25, type=int)
    parser.add_argument('--area_dim', default=10, type=int)

    ''' Dataloader '''
    parser.add_argument('--batch_size', default=20, type=int)
    parser.add_argument('--workers', default=8, type=int)
    parser.add_argument('--train_shuffle', default='1', type=bool_flag)

    ''' Model '''
    # architecture
    parser.add_argument('--gene_layout', default='1', type=bool_flag)
    parser.add_argument('--box_refine', default='1', type=bool_flag)
    # input
    parser.add_argument('--embedding_dim', default=128,type=int)
    # refine
    parser.add_argument('--refinement_dims', default='1024, 512, 256, 128, 64',type=int_tuple)
    # box refine
    parser.add_argument('--box_refine_arch', default='I15,C3-64-2,C3-128-2,C3-256-2',type=str)
    parser.add_argument('--roi_cat_feature',default='1',type=bool_flag)  
    # control
    parser.add_argument('--gt_box', default=0, type=bool_flag)
    parser.add_argument('--relative', default=1, type=bool_flag)

    ''' Loss '''
    parser.add_argument('--mutex', default=1, type=bool_flag)
    parser.add_argument('--inside', default=1, type=bool_flag)
    parser.add_argument('--coverage', default=1, type=bool_flag)
    parser.add_argument('--render', default=1, type=bool_flag)
    parser.add_argument('--nsample', default=100,type=int)
    parser.add_argument('--loss_refine', default=0, type=bool_flag)
    parser.add_argument('--render_refine', default=0, type=bool_flag)    
    
    ''' Optimizer '''
    parser.add_argument('--optimizer',default='Adam',type=str)
    parser.add_argument('--scheduler',default='plateau',type=str)
    parser.add_argument('--learning_rate', default=1e-4, type=float)
    parser.add_argument('--decay_rate', default=1e-4, type=float)
    parser.add_argument('--step_size', default=10, type=float)
    parser.add_argument('--step_rate', default=0.5, type=float)

    ''' Checkpoints '''
    parser.add_argument('--save_interval', default=5, type=int)
    parser.add_argument('--n_saved', default=20, type=int)
    parser.add_argument('--pretrain', default=None, type=str)
    parser.add_argument('--skip_train', default=0, type=bool_flag)

    ''' Trainer '''
    parser.add_argument('--seed', default=74269,type=int)
    parser.add_argument('--epoch', default=101,type=int)
    parser.add_argument('--start_epoch',default=None,type=int)

    ''' Others '''
    parser.add_argument('--gpu', default='0', type=str)
    parser.add_argument('--multi_gpu', default=None, type=str)
    parser.add_argument('--suffix',default=None,type=str)
    parser.add_argument('--debug', default=0, type=bool_flag)
    parser.add_argument('--test', default=0, type=bool_flag)

    return parser.parse_args()

def check_manual_seed(args):
    seed = args.seed or random.randint(1, 10000)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

def get_model(args):
    return Model(embedding_dim=args.embedding_dim,
    image_size=args.image_size,
    input_dim = args.input_dim,
    attribute_dim=args.pos_dim+args.area_dim,
    refinement_dims=args.refinement_dims if args.gene_layout else None,    
    box_refine_arch=args.box_refine_arch if args.box_refine else None,
    roi_cat_feature=args.roi_cat_feature)

def get_dataset(args,split='valid'):
    return FloorPlanDataset(f'{args.dataset_dir}/data_{split}.mat')

def get_dataloader(args,dataset,split):
    print(f"{split},shuffle:",split=='train' and args.train_shuffle and (not args.debug))
    return DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=True if split=='train' and args.train_shuffle and (not args.debug) else False,
        num_workers=args.workers,
        drop_last=True if split=='train' else False,
        collate_fn=floorplan_collate_fn
        )

def  get_data_loaders(args):
    train_dataset = get_dataset(args,'train' if not args.debug else 'valid') if not args.skip_train else None
    valid_dataset = get_dataset(args,'valid')
    test_dataset = get_dataset(args,'test')
    
    train_loader = get_dataloader(args,train_dataset,'train') if not args.skip_train else None
    valid_loader = get_dataloader(args,valid_dataset,'valid')
    test_loader = get_dataloader(args,test_dataset,'test')
    return train_loader,valid_loader,test_loader

def get_optimizer(model,args):
    if args.optimizer == 'SGD':
        optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0)
    elif args.optimizer == 'Adam':
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=args.learning_rate,
            betas=(0.9, 0.999),
            eps=1e-08,
            weight_decay=args.decay_rate
        )
    elif args.optimizer == 'AdamW':
        optimizer = torch.optim.AdamW(
            model.parameters(),
            lr = args.learning_rate,
            weight_decay=args.decay_rate
        )
    return optimizer

def get_scheduler(optimizer,args):
    if args.scheduler == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.step_rate)
    else:
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode='max',factor=args.step_rate,patience=args.step_size,threshold=0.005,verbose=True)
    return scheduler

def get_losses(args):
    loss = {}
    weight = torch.ones(15).cuda()
    weight[13]=weight[14]=0 # ignore unused category
    if args.gene_layout: 
        loss['gene_ce'] = torch.nn.CrossEntropyLoss(weight=weight)
    loss['box_mse'] = torch.nn.SmoothL1Loss()
    if args.box_refine:
        loss['box_ref_mse'] = torch.nn.SmoothL1Loss()
    if args.mutex:
        loss['mutex'] = MutexLoss(nsample=args.nsample)
    if args.inside:
        loss['inside'] = InsideLoss(nsample=args.nsample)
    if args.coverage:
        loss['coverage'] = CoverageLoss(nsample=args.nsample)
    if args.render:
        loss['render'] = BoxRenderLoss(nsample=args.nsample)
    return loss

def batch_cuda(batch):
    batch = list(batch)
    for i in range(len(batch)):
        if isinstance(batch[i],torch.Tensor):
            batch[i] = batch[i].cuda()
        elif isinstance(batch[i],list) and isinstance(batch[i][0],torch.Tensor):
            batch[i] = [e.cuda() for e in batch[i]]
    return batch

def main(args):
    args.epoch=args.epoch if not args.debug else 6
    print("Create dir...")
    start_date = str(datetime.datetime.now().strftime('%Y-%m-%d'))+("" if not args.debug else "_debug")+("" if not args.test else "_test")
    if not os.path.exists(f'../experiment'):
        os.mkdir(f'../experiment')
    experiment_dir = path.Path(f'../experiment/{start_date}')
    experiment_dir.mkdir(exist_ok=True)
    start_time = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) + '' if args.suffix is None else args.suffix
    file_dir = path.Path(f'{experiment_dir}/DeepLayout_{start_time}')
    file_dir.mkdir(exist_ok=True)
    checkpoints_dir = file_dir.joinpath('checkpoints/')
    checkpoints_dir.mkdir(exist_ok=True)
    log_dir = file_dir.joinpath('logs/')
    log_dir.mkdir(exist_ok=True)
    shutil.copy(__file__,log_dir/'train.py')
    shutil.copytree('./model',log_dir/'model')
    output_dir = file_dir.joinpath('output/')
    output_dir.mkdir(exist_ok=True)
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    file_handler = logging.FileHandler(str(log_dir)+'/log.txt')
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    if args.skip_train:
        logger.info(f'python {args.argv}')
    else: 
        logger.info(f'python {args.argv} --skip_train 1 --pretrain ')
    logger.info(args)
    logger.info('---------------------------------------------------TRANING---------------------------------------------------')
    logger.info(f'Use seed: {args.seed}')
    # check_manual_seed(args)

    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu if args.multi_gpu is None else args.multi_gpu

    print("Create dataloader...")
    train_loader,valid_loader,test_loader = get_data_loaders(args)
    print("Create model...")
    model = get_model(args)
    print("Gene:",model.refinement_net!=None and args.gene_layout)
    print("Refine:",args.box_refine)
    print("Cat feat:",args.roi_cat_feature)
    print("GT BOX:",args.gt_box)
    print("Iniside Loss:",args.inside)
    print("Coverage Loss:",args.coverage)
    print("Mutex Loss:",args.mutex)
    print("Render Loss:",args.render)
    logger.info(argparse.Namespace(embedding_dim=args.embedding_dim,
    image_size=args.image_size,
    input_dim = args.input_dim,
    attribute_dim=args.pos_dim+args.area_dim,
    refinement_dims=args.refinement_dims if args.gene_layout else None,    
    box_refine_arch=args.box_refine_arch if args.box_refine else None,
    roi_cat_feature=args.roi_cat_feature))
    logger.info(str(model))
    optimizer = get_optimizer(model,args)
    scheduler = get_scheduler(optimizer,args)
    loss = get_losses(args)

    if args.pretrain is not None:
        model.load_state_dict(torch.load(args.pretrain))

    print("Cuda...")
    model.cuda()

    def update(engine,batch):
        model.train()
        optimizer.zero_grad()
        
        boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)

        if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)

        model_out = model(
            objs, 
            triples, 
            boundary,
            obj_to_img = obj_to_img,
            attributes=attrs,
            boxes_gt= boxes if args.gt_box else None, 
            generate = args.gene_layout and engine.state.epoch>1,
            refine = args.box_refine and engine.state.epoch>2,
            relative = args.relative,
            inside_box=inside_box if args.relative else None,
        )
        boxes_pred, gene_layout, boxes_refine = model_out
        
        total_loss = 0
        loss_items = {}
        epoch = engine.state.epoch
        step_weight = [0.1,0.5,1.0]
        for name in loss:
            l = None
            if name=='box_mse':
                l = loss[name](boxes_pred,boxes)
            else:
                if epoch>1:
                    if name=='gene_ce':
                        l = step_weight[epoch-2 if epoch<=3 else -1]*loss[name](gene_layout,layout)
                    elif name=='mutex':
                        l = 0.1*loss[name](boxes_pred,obj_to_img,objs)
                        if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,obj_to_img,objs)
                    elif name=='inside':
                        l = 0.1*loss[name](boxes_pred,inside_box,obj_to_img)
                        if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,inside_box,obj_to_img)
                    elif name=='coverage':
                        l = 0.1*loss[name](boxes_pred,inside_coords,obj_to_img)
                        if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,inside_coords,obj_to_img)
                    elif name=='render':
                        l = loss[name](boxes_pred,boxes)
                        if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,boxes)
                
                if epoch>2:
                    if name=='box_ref_mse':
                        l = step_weight[epoch-3 if epoch<=4 else -1]*loss[name](boxes_refine,boxes)

            if l is not None:
                total_loss+=l
                loss_items[name]=l.item()
        loss_items['total_loss'] = total_loss.item()

        total_loss.backward()
        optimizer.step()
        return loss_items
    
    def inference(engine,batch):
        model.eval()
        with torch.no_grad():
            boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)

            if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)

            model_out = model(
                objs, 
                triples, 
                boundary,
                obj_to_img = obj_to_img,
                attributes=attrs,
                boxes_gt= boxes if args.gt_box else None, 
                generate = args.gene_layout,
                refine = args.box_refine,
                relative = args.relative,
                inside_box=inside_box if args.relative else None,
            )
            boxes_pred, gene_layout, boxes_refine = model_out
            
            total_loss = 0
            loss_items = {}
            for name in loss:
                l = None
                if name=='box_mse':
                    l = loss[name](boxes_pred,boxes)
                if engine.state.epoch>1:
                    if name=='gene_ce':
                        l = loss[name](gene_layout,layout)
                    elif name=='mutex':
                        l = 0.1*loss[name](boxes_pred,obj_to_img,objs)
                        if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,obj_to_img,objs)
                    elif name=='inside':
                        l = 0.1*loss[name](boxes_pred,inside_box,obj_to_img)
                        if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,inside_box,obj_to_img)
                    elif name=='coverage':
                        l = 0.1*loss[name](boxes_pred,inside_coords,obj_to_img)
                        if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,inside_coords,obj_to_img)
                    elif name=='render':
                        l = loss[name](boxes_pred,boxes)
                        if args.box_refine and args.loss_refine: l+=loss[name](boxes_refine,boxes)

                if engine.state.epoch>2:
                    if name=='box_ref_mse':
                        l = loss[name](boxes_refine,boxes)

                if l is not None:
                    total_loss+=l
                    loss_items[name]=l.item()
            loss_items['total_loss'] = total_loss.item()

            # boxes pred
            boxes_pred = boxes_pred.detach()
            boxes_pred = centers_to_extents(boxes_pred)

            if args.gene_layout:
                gene_layout = gene_layout*boundary[:,:1]

            # boxes refine
            if args.box_refine:
                boxes_refine = boxes_refine.detach()
                boxes_refine = centers_to_extents(boxes_refine)
                
            # gt
            boxes = centers_to_extents(boxes)

            return {
                'loss':loss_items,
                'pred':[
                    boxes_pred,
                    gene_layout.detach() if args.gene_layout else None,
                    boxes_refine if args.box_refine else None,
                    ],
                'gt':[layout,boxes]
            }
    
    print("Create trainer...")
    optimizer.step()
    scheduler.step(0)
    trainer = Engine(update)
    valid_evaluator = Engine(inference)

    if args.start_epoch is not None:
        @trainer.on(Events.STARTED)
        def set_up_state(engine):
            engine.state.epoch = args.start_epoch

    total_func = lambda e:(e.state.metrics['box_iou']+(e.state.metrics['gene_acc'] if args.gene_layout else 0)+(e.state.metrics['box_refine_iou'] if args.box_refine else 0))

    @valid_evaluator.on(Events.COMPLETED)
    def schedual(engine):
        optimizer.step()
        if args.scheduler == 'step':
            scheduler.step()
        else:
            scheduler.step(total_func(engine))

    @trainer.on(Events.EPOCH_COMPLETED)
    def evaluate(engine):
        valid_evaluator.run(valid_loader)

    # Metrics
    MetricAverage(output_transform=lambda output:iou(output['pred'][0],output['gt'][1])).attach(valid_evaluator,'box_iou')
    if args.gene_layout: 
        MetricAverage(output_transform=lambda output:image_acc_ignore(output['pred'][1],output['gt'][0],13)).attach(valid_evaluator,'gene_acc')
    if args.box_refine: 
        MetricAverage(output_transform=lambda output:iou(output['pred'][2],output['gt'][1])).attach(valid_evaluator,'box_refine_iou')
    
    metrics = ['img_acc','box_iou','mask_acc']

    # TQDM
    ProgressBar(persist=True).attach(trainer, output_transform=lambda o:{'loss':o['total_loss']}, metric_names='all')
    ProgressBar(persist=False).attach(valid_evaluator, output_transform=lambda o:{'loss':o['loss']['total_loss']},metric_names='all')
    
    # Tensorboard 
    tb_logger = TensorboardLogger(log_dir=log_dir)
    tb_logger.attach(trainer,
                 log_handler=OutputHandler(tag="train",output_transform=lambda o: o,metric_names='all'),
                 event_name=Events.ITERATION_COMPLETED)
    tb_logger.attach(trainer,
                 log_handler=OptimizerParamsHandler(optimizer),
                 event_name=Events.ITERATION_STARTED)
    tb_logger.attach(valid_evaluator,
                 log_handler=OutputHandler(tag="valid",output_transform=lambda o:o['loss'],metric_names='all', global_step_transform=global_step_from_engine(trainer)),
                 event_name=Events.EPOCH_COMPLETED)
    
    # Logging
    @trainer.on(Events.EPOCH_COMPLETED)
    def log_results(engine):
        logging.info(f'Train, Epoch{engine.state.epoch}, Loss: {str(engine.state.output)}')

    @valid_evaluator.on(Events.EPOCH_COMPLETED)
    def log_results(engine):
        loss = engine.state.output['loss']
        metrics = engine.state.metrics
        logging.info(f'Valid, Epoch{engine.state.epoch}, Loss: {str(loss)}')
        logging.info(f'Valid, Epoch{engine.state.epoch}, Metrics: {str(metrics)}')
    
    # Checkpoint
    epoch_saver = ModelCheckpoint(checkpoints_dir, 'epoch',save_interval=args.save_interval,n_saved=args.n_saved, require_empty=False, create_dir=True)
    latest_saver = ModelCheckpoint(checkpoints_dir, 'latest',score_function=lambda e:e.state.epoch,n_saved=1, require_empty=False, create_dir=True)
    loss_saver = ModelCheckpoint(checkpoints_dir, 'loss',score_function=lambda e:-e.state.output['loss']['total_loss'],n_saved=1, require_empty=False, create_dir=True)

    trainer.add_event_handler(Events.EPOCH_COMPLETED, latest_saver, {'model': model,'opt':optimizer})
    trainer.add_event_handler(Events.EPOCH_COMPLETED, epoch_saver, {'model': model,'opt':optimizer})
    valid_evaluator.add_event_handler(Events.COMPLETED, loss_saver, {'model': model})

    if not args.skip_train:
        trainer.run(train_loader,max_epochs=args.epoch)
    tb_logger.close()

    output = {}
    def test(engine,batch):
        model.eval()
        with torch.no_grad():
            boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)

            model_out = model(
                objs, 
                triples, 
                boundary,
                obj_to_img = obj_to_img,
                attributes=attrs,
                boxes_gt= boxes if args.gt_box else None, 
                generate = args.gene_layout,
                refine = args.box_refine,
                relative = args.relative,
                inside_box=inside_box if args.relative else None,
            )
            boxes_pred, gene_layout, boxes_refine = model_out

            ''' box: x_c,y_c,w,h -> x0,y0,x1,y1 '''
            # boxes pred
            boxes_pred = boxes_pred.detach()
            boxes_pred = centers_to_extents(boxes_pred)
                
            # boxes refine
            if args.box_refine:
                boxes_refine = boxes_refine.detach()
                boxes_refine = centers_to_extents(boxes_refine)
                
            # gt
            if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)
            boxes = centers_to_extents(boxes)

            ''' layout: B*C*H*W->B*H*W '''
            if args.gene_layout: 
                gene_layout = gene_layout*boundary[:,:1]
                gene_preds = torch.argmax(gene_layout.softmax(1).detach(),dim=1)
            
            ''' layout with outside'''
            for i in range(len(layout)):
                mask = boundary[i,0]==0
                if args.gene_layout: 
                    gene_preds[i][mask]=13

            ''' mertics '''
            # box iou
            box_ious = iou(boxes_pred,boxes)
            box_refine_ious = None
            if args.box_refine:
                box_refine_ious = iou(boxes_refine,boxes)

            gene_acc_all = None
            gene_acc_fg = None
            if args.gene_layout: 
                gene_acc_all = image_acc(gene_preds,layout)
                gene_acc_fg = image_acc_ignore(gene_preds,layout,13)

            ''' save output '''
            for i in range(len(layout)):
                ''' objs '''
                obj = objs[obj_to_img==i].cpu().numpy()

                ''' box '''
                box_pred = boxes_pred[obj_to_img==i]
                box_pred = box_pred.cpu().numpy()
                box_iou = box_ious[obj_to_img==i].view(-1).cpu().numpy()
                
                box_refine = None
                if args.box_refine:
                    box_refine = boxes_refine[obj_to_img==i].cpu().numpy()
                    box_refine_iou = box_refine_ious[obj_to_img==i].view(-1).cpu().numpy()

                ''' layout '''
                if args.gene_layout: 
                    gene_pred = gene_preds[i].cpu().numpy().astype('uint8')
  

                output[name[i]] = {
                        'obj':obj,
                        'box_gt':boxes[obj_to_img==i].cpu().numpy(),
                    
                        'box_pred':box_pred,
                        'box_iou':box_iou,

                        'box_refine':box_refine if args.box_refine else None,
                        'box_refine_iou':box_refine_iou if args.box_refine else None,

                        'gene_pred':gene_pred if args.gene_layout else None,
                        'gene_acc_all': gene_acc_all[i].item() if args.gene_layout else None,
                        'gene_acc_fg':gene_acc_fg[i].item() if args.gene_layout else None
                        }
            return {
                'pred':[
                    boxes_pred,#0
                    gene_preds if args.gene_layout else None,#1
                    boxes_refine if args.box_refine else None,#2
                    ],
                'gt':[layout,boxes]
            }                   
    
    test_evaluator = Engine(test)

    MetricAverage(output_transform=lambda output:iou(output['pred'][0],output['gt'][1])).attach(test_evaluator,'box_iou')

    if args.gene_layout: 
        MetricAverage(output_transform=lambda output:image_acc_ignore(output['pred'][1],output['gt'][0],13)).attach(test_evaluator,'gene_acc')
        MetricAverage(output_transform=lambda output:image_acc(output['pred'][1],output['gt'][0])).attach(test_evaluator,'gene_acc_all')
    if args.box_refine: 
        MetricAverage(output_transform=lambda output:iou(output['pred'][2],output['gt'][1])).attach(test_evaluator,'box_refine_iou')

    ProgressBar(persist=False).attach(test_evaluator)
    @test_evaluator.on(Events.COMPLETED)
    def save_metrics(engine):
        metrics = engine.state.metrics
        with open(f'{output_dir}/output_{start_time}_metrics.json','w') as f:
            f.write(str(metrics))

    if not args.skip_train:
        test_evaluator.run(valid_loader)
    else:
        test_evaluator.run(test_loader)
    with open(f'{output_dir}/output_{start_time}.pkl','wb') as f:
        pickle.dump(output,f,pickle.HIGHEST_PROTOCOL)

if __name__ == "__main__":
    args = parse_args()
    args.argv = ' '.join(sys.argv)
    main(args)