Spaces:
Runtime error
Runtime error
File size: 25,068 Bytes
06db6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import os
import json
import sys
import shutil
import random
import pickle
import datetime
import argparse
import pathlib as path
import tqdm
import logging
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision
from tensorboardX import SummaryWriter
from model.utils import int_tuple, str_tuple, bool_flag
from model.metrics import iou,MetricAverage,image_acc,image_acc_ignore,binary_image_acc
from model.model import Model
from model.floorplan import FloorPlanDataset,floorplan_collate_fn
from model.loss import *
from model.box_utils import *
from model.utils import *
from ignite.contrib.handlers.tensorboard_logger import *
from ignite.contrib.handlers import *
from ignite.contrib.metrics import *
from ignite.metrics.accuracy import _BaseClassification
from ignite.engine import *
from ignite.handlers import *
from ignite.metrics import *
def parse_args():
parser = argparse.ArgumentParser()
''' Dataset '''
parser.add_argument('--dataset_dir', default='./data', type=str)
parser.add_argument('--image_size', default='128,128', type=int_tuple)
parser.add_argument('--input_dim', default=3, type=int)
parser.add_argument('--with_house', default='0', type=bool_flag)
parser.add_argument('--pos_dim', default=25, type=int)
parser.add_argument('--area_dim', default=10, type=int)
''' Dataloader '''
parser.add_argument('--batch_size', default=20, type=int)
parser.add_argument('--workers', default=8, type=int)
parser.add_argument('--train_shuffle', default='1', type=bool_flag)
''' Model '''
# architecture
parser.add_argument('--gene_layout', default='1', type=bool_flag)
parser.add_argument('--box_refine', default='1', type=bool_flag)
# input
parser.add_argument('--embedding_dim', default=128,type=int)
# refine
parser.add_argument('--refinement_dims', default='1024, 512, 256, 128, 64',type=int_tuple)
# box refine
parser.add_argument('--box_refine_arch', default='I15,C3-64-2,C3-128-2,C3-256-2',type=str)
parser.add_argument('--roi_cat_feature',default='1',type=bool_flag)
# control
parser.add_argument('--gt_box', default=0, type=bool_flag)
parser.add_argument('--relative', default=1, type=bool_flag)
''' Loss '''
parser.add_argument('--mutex', default=1, type=bool_flag)
parser.add_argument('--inside', default=1, type=bool_flag)
parser.add_argument('--coverage', default=1, type=bool_flag)
parser.add_argument('--render', default=1, type=bool_flag)
parser.add_argument('--nsample', default=100,type=int)
parser.add_argument('--loss_refine', default=0, type=bool_flag)
parser.add_argument('--render_refine', default=0, type=bool_flag)
''' Optimizer '''
parser.add_argument('--optimizer',default='Adam',type=str)
parser.add_argument('--scheduler',default='plateau',type=str)
parser.add_argument('--learning_rate', default=1e-4, type=float)
parser.add_argument('--decay_rate', default=1e-4, type=float)
parser.add_argument('--step_size', default=10, type=float)
parser.add_argument('--step_rate', default=0.5, type=float)
''' Checkpoints '''
parser.add_argument('--save_interval', default=5, type=int)
parser.add_argument('--n_saved', default=20, type=int)
parser.add_argument('--pretrain', default=None, type=str)
parser.add_argument('--skip_train', default=0, type=bool_flag)
''' Trainer '''
parser.add_argument('--seed', default=74269,type=int)
parser.add_argument('--epoch', default=101,type=int)
parser.add_argument('--start_epoch',default=None,type=int)
''' Others '''
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--multi_gpu', default=None, type=str)
parser.add_argument('--suffix',default=None,type=str)
parser.add_argument('--debug', default=0, type=bool_flag)
parser.add_argument('--test', default=0, type=bool_flag)
return parser.parse_args()
def check_manual_seed(args):
seed = args.seed or random.randint(1, 10000)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def get_model(args):
return Model(embedding_dim=args.embedding_dim,
image_size=args.image_size,
input_dim = args.input_dim,
attribute_dim=args.pos_dim+args.area_dim,
refinement_dims=args.refinement_dims if args.gene_layout else None,
box_refine_arch=args.box_refine_arch if args.box_refine else None,
roi_cat_feature=args.roi_cat_feature)
def get_dataset(args,split='valid'):
return FloorPlanDataset(f'{args.dataset_dir}/data_{split}.mat')
def get_dataloader(args,dataset,split):
print(f"{split},shuffle:",split=='train' and args.train_shuffle and (not args.debug))
return DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True if split=='train' and args.train_shuffle and (not args.debug) else False,
num_workers=args.workers,
drop_last=True if split=='train' else False,
collate_fn=floorplan_collate_fn
)
def get_data_loaders(args):
train_dataset = get_dataset(args,'train' if not args.debug else 'valid') if not args.skip_train else None
valid_dataset = get_dataset(args,'valid')
test_dataset = get_dataset(args,'test')
train_loader = get_dataloader(args,train_dataset,'train') if not args.skip_train else None
valid_loader = get_dataloader(args,valid_dataset,'valid')
test_loader = get_dataloader(args,test_dataset,'test')
return train_loader,valid_loader,test_loader
def get_optimizer(model,args):
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
elif args.optimizer == 'AdamW':
optimizer = torch.optim.AdamW(
model.parameters(),
lr = args.learning_rate,
weight_decay=args.decay_rate
)
return optimizer
def get_scheduler(optimizer,args):
if args.scheduler == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.step_rate)
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode='max',factor=args.step_rate,patience=args.step_size,threshold=0.005,verbose=True)
return scheduler
def get_losses(args):
loss = {}
weight = torch.ones(15).cuda()
weight[13]=weight[14]=0 # ignore unused category
if args.gene_layout:
loss['gene_ce'] = torch.nn.CrossEntropyLoss(weight=weight)
loss['box_mse'] = torch.nn.SmoothL1Loss()
if args.box_refine:
loss['box_ref_mse'] = torch.nn.SmoothL1Loss()
if args.mutex:
loss['mutex'] = MutexLoss(nsample=args.nsample)
if args.inside:
loss['inside'] = InsideLoss(nsample=args.nsample)
if args.coverage:
loss['coverage'] = CoverageLoss(nsample=args.nsample)
if args.render:
loss['render'] = BoxRenderLoss(nsample=args.nsample)
return loss
def batch_cuda(batch):
batch = list(batch)
for i in range(len(batch)):
if isinstance(batch[i],torch.Tensor):
batch[i] = batch[i].cuda()
elif isinstance(batch[i],list) and isinstance(batch[i][0],torch.Tensor):
batch[i] = [e.cuda() for e in batch[i]]
return batch
def main(args):
args.epoch=args.epoch if not args.debug else 6
print("Create dir...")
start_date = str(datetime.datetime.now().strftime('%Y-%m-%d'))+("" if not args.debug else "_debug")+("" if not args.test else "_test")
if not os.path.exists(f'../experiment'):
os.mkdir(f'../experiment')
experiment_dir = path.Path(f'../experiment/{start_date}')
experiment_dir.mkdir(exist_ok=True)
start_time = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) + '' if args.suffix is None else args.suffix
file_dir = path.Path(f'{experiment_dir}/DeepLayout_{start_time}')
file_dir.mkdir(exist_ok=True)
checkpoints_dir = file_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = file_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
shutil.copy(__file__,log_dir/'train.py')
shutil.copytree('./model',log_dir/'model')
output_dir = file_dir.joinpath('output/')
output_dir.mkdir(exist_ok=True)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(str(log_dir)+'/log.txt')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
if args.skip_train:
logger.info(f'python {args.argv}')
else:
logger.info(f'python {args.argv} --skip_train 1 --pretrain ')
logger.info(args)
logger.info('---------------------------------------------------TRANING---------------------------------------------------')
logger.info(f'Use seed: {args.seed}')
# check_manual_seed(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu if args.multi_gpu is None else args.multi_gpu
print("Create dataloader...")
train_loader,valid_loader,test_loader = get_data_loaders(args)
print("Create model...")
model = get_model(args)
print("Gene:",model.refinement_net!=None and args.gene_layout)
print("Refine:",args.box_refine)
print("Cat feat:",args.roi_cat_feature)
print("GT BOX:",args.gt_box)
print("Iniside Loss:",args.inside)
print("Coverage Loss:",args.coverage)
print("Mutex Loss:",args.mutex)
print("Render Loss:",args.render)
logger.info(argparse.Namespace(embedding_dim=args.embedding_dim,
image_size=args.image_size,
input_dim = args.input_dim,
attribute_dim=args.pos_dim+args.area_dim,
refinement_dims=args.refinement_dims if args.gene_layout else None,
box_refine_arch=args.box_refine_arch if args.box_refine else None,
roi_cat_feature=args.roi_cat_feature))
logger.info(str(model))
optimizer = get_optimizer(model,args)
scheduler = get_scheduler(optimizer,args)
loss = get_losses(args)
if args.pretrain is not None:
model.load_state_dict(torch.load(args.pretrain))
print("Cuda...")
model.cuda()
def update(engine,batch):
model.train()
optimizer.zero_grad()
boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)
if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)
model_out = model(
objs,
triples,
boundary,
obj_to_img = obj_to_img,
attributes=attrs,
boxes_gt= boxes if args.gt_box else None,
generate = args.gene_layout and engine.state.epoch>1,
refine = args.box_refine and engine.state.epoch>2,
relative = args.relative,
inside_box=inside_box if args.relative else None,
)
boxes_pred, gene_layout, boxes_refine = model_out
total_loss = 0
loss_items = {}
epoch = engine.state.epoch
step_weight = [0.1,0.5,1.0]
for name in loss:
l = None
if name=='box_mse':
l = loss[name](boxes_pred,boxes)
else:
if epoch>1:
if name=='gene_ce':
l = step_weight[epoch-2 if epoch<=3 else -1]*loss[name](gene_layout,layout)
elif name=='mutex':
l = 0.1*loss[name](boxes_pred,obj_to_img,objs)
if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,obj_to_img,objs)
elif name=='inside':
l = 0.1*loss[name](boxes_pred,inside_box,obj_to_img)
if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,inside_box,obj_to_img)
elif name=='coverage':
l = 0.1*loss[name](boxes_pred,inside_coords,obj_to_img)
if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,inside_coords,obj_to_img)
elif name=='render':
l = loss[name](boxes_pred,boxes)
if args.box_refine and args.loss_refine and epoch>2: l+=loss[name](boxes_refine,boxes)
if epoch>2:
if name=='box_ref_mse':
l = step_weight[epoch-3 if epoch<=4 else -1]*loss[name](boxes_refine,boxes)
if l is not None:
total_loss+=l
loss_items[name]=l.item()
loss_items['total_loss'] = total_loss.item()
total_loss.backward()
optimizer.step()
return loss_items
def inference(engine,batch):
model.eval()
with torch.no_grad():
boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)
if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)
model_out = model(
objs,
triples,
boundary,
obj_to_img = obj_to_img,
attributes=attrs,
boxes_gt= boxes if args.gt_box else None,
generate = args.gene_layout,
refine = args.box_refine,
relative = args.relative,
inside_box=inside_box if args.relative else None,
)
boxes_pred, gene_layout, boxes_refine = model_out
total_loss = 0
loss_items = {}
for name in loss:
l = None
if name=='box_mse':
l = loss[name](boxes_pred,boxes)
if engine.state.epoch>1:
if name=='gene_ce':
l = loss[name](gene_layout,layout)
elif name=='mutex':
l = 0.1*loss[name](boxes_pred,obj_to_img,objs)
if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,obj_to_img,objs)
elif name=='inside':
l = 0.1*loss[name](boxes_pred,inside_box,obj_to_img)
if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,inside_box,obj_to_img)
elif name=='coverage':
l = 0.1*loss[name](boxes_pred,inside_coords,obj_to_img)
if args.box_refine and args.loss_refine: l+=0.1*loss[name](boxes_refine,inside_coords,obj_to_img)
elif name=='render':
l = loss[name](boxes_pred,boxes)
if args.box_refine and args.loss_refine: l+=loss[name](boxes_refine,boxes)
if engine.state.epoch>2:
if name=='box_ref_mse':
l = loss[name](boxes_refine,boxes)
if l is not None:
total_loss+=l
loss_items[name]=l.item()
loss_items['total_loss'] = total_loss.item()
# boxes pred
boxes_pred = boxes_pred.detach()
boxes_pred = centers_to_extents(boxes_pred)
if args.gene_layout:
gene_layout = gene_layout*boundary[:,:1]
# boxes refine
if args.box_refine:
boxes_refine = boxes_refine.detach()
boxes_refine = centers_to_extents(boxes_refine)
# gt
boxes = centers_to_extents(boxes)
return {
'loss':loss_items,
'pred':[
boxes_pred,
gene_layout.detach() if args.gene_layout else None,
boxes_refine if args.box_refine else None,
],
'gt':[layout,boxes]
}
print("Create trainer...")
optimizer.step()
scheduler.step(0)
trainer = Engine(update)
valid_evaluator = Engine(inference)
if args.start_epoch is not None:
@trainer.on(Events.STARTED)
def set_up_state(engine):
engine.state.epoch = args.start_epoch
total_func = lambda e:(e.state.metrics['box_iou']+(e.state.metrics['gene_acc'] if args.gene_layout else 0)+(e.state.metrics['box_refine_iou'] if args.box_refine else 0))
@valid_evaluator.on(Events.COMPLETED)
def schedual(engine):
optimizer.step()
if args.scheduler == 'step':
scheduler.step()
else:
scheduler.step(total_func(engine))
@trainer.on(Events.EPOCH_COMPLETED)
def evaluate(engine):
valid_evaluator.run(valid_loader)
# Metrics
MetricAverage(output_transform=lambda output:iou(output['pred'][0],output['gt'][1])).attach(valid_evaluator,'box_iou')
if args.gene_layout:
MetricAverage(output_transform=lambda output:image_acc_ignore(output['pred'][1],output['gt'][0],13)).attach(valid_evaluator,'gene_acc')
if args.box_refine:
MetricAverage(output_transform=lambda output:iou(output['pred'][2],output['gt'][1])).attach(valid_evaluator,'box_refine_iou')
metrics = ['img_acc','box_iou','mask_acc']
# TQDM
ProgressBar(persist=True).attach(trainer, output_transform=lambda o:{'loss':o['total_loss']}, metric_names='all')
ProgressBar(persist=False).attach(valid_evaluator, output_transform=lambda o:{'loss':o['loss']['total_loss']},metric_names='all')
# Tensorboard
tb_logger = TensorboardLogger(log_dir=log_dir)
tb_logger.attach(trainer,
log_handler=OutputHandler(tag="train",output_transform=lambda o: o,metric_names='all'),
event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(trainer,
log_handler=OptimizerParamsHandler(optimizer),
event_name=Events.ITERATION_STARTED)
tb_logger.attach(valid_evaluator,
log_handler=OutputHandler(tag="valid",output_transform=lambda o:o['loss'],metric_names='all', global_step_transform=global_step_from_engine(trainer)),
event_name=Events.EPOCH_COMPLETED)
# Logging
@trainer.on(Events.EPOCH_COMPLETED)
def log_results(engine):
logging.info(f'Train, Epoch{engine.state.epoch}, Loss: {str(engine.state.output)}')
@valid_evaluator.on(Events.EPOCH_COMPLETED)
def log_results(engine):
loss = engine.state.output['loss']
metrics = engine.state.metrics
logging.info(f'Valid, Epoch{engine.state.epoch}, Loss: {str(loss)}')
logging.info(f'Valid, Epoch{engine.state.epoch}, Metrics: {str(metrics)}')
# Checkpoint
epoch_saver = ModelCheckpoint(checkpoints_dir, 'epoch',save_interval=args.save_interval,n_saved=args.n_saved, require_empty=False, create_dir=True)
latest_saver = ModelCheckpoint(checkpoints_dir, 'latest',score_function=lambda e:e.state.epoch,n_saved=1, require_empty=False, create_dir=True)
loss_saver = ModelCheckpoint(checkpoints_dir, 'loss',score_function=lambda e:-e.state.output['loss']['total_loss'],n_saved=1, require_empty=False, create_dir=True)
trainer.add_event_handler(Events.EPOCH_COMPLETED, latest_saver, {'model': model,'opt':optimizer})
trainer.add_event_handler(Events.EPOCH_COMPLETED, epoch_saver, {'model': model,'opt':optimizer})
valid_evaluator.add_event_handler(Events.COMPLETED, loss_saver, {'model': model})
if not args.skip_train:
trainer.run(train_loader,max_epochs=args.epoch)
tb_logger.close()
output = {}
def test(engine,batch):
model.eval()
with torch.no_grad():
boundary,inside_box,objs,attrs,triples,layout,boxes,inside_coords,obj_to_img,triple_to_img,name = batch_cuda(batch)
model_out = model(
objs,
triples,
boundary,
obj_to_img = obj_to_img,
attributes=attrs,
boxes_gt= boxes if args.gt_box else None,
generate = args.gene_layout,
refine = args.box_refine,
relative = args.relative,
inside_box=inside_box if args.relative else None,
)
boxes_pred, gene_layout, boxes_refine = model_out
''' box: x_c,y_c,w,h -> x0,y0,x1,y1 '''
# boxes pred
boxes_pred = boxes_pred.detach()
boxes_pred = centers_to_extents(boxes_pred)
# boxes refine
if args.box_refine:
boxes_refine = boxes_refine.detach()
boxes_refine = centers_to_extents(boxes_refine)
# gt
if args.relative: boxes = box_rel2abs(boxes,inside_box,obj_to_img)
boxes = centers_to_extents(boxes)
''' layout: B*C*H*W->B*H*W '''
if args.gene_layout:
gene_layout = gene_layout*boundary[:,:1]
gene_preds = torch.argmax(gene_layout.softmax(1).detach(),dim=1)
''' layout with outside'''
for i in range(len(layout)):
mask = boundary[i,0]==0
if args.gene_layout:
gene_preds[i][mask]=13
''' mertics '''
# box iou
box_ious = iou(boxes_pred,boxes)
box_refine_ious = None
if args.box_refine:
box_refine_ious = iou(boxes_refine,boxes)
gene_acc_all = None
gene_acc_fg = None
if args.gene_layout:
gene_acc_all = image_acc(gene_preds,layout)
gene_acc_fg = image_acc_ignore(gene_preds,layout,13)
''' save output '''
for i in range(len(layout)):
''' objs '''
obj = objs[obj_to_img==i].cpu().numpy()
''' box '''
box_pred = boxes_pred[obj_to_img==i]
box_pred = box_pred.cpu().numpy()
box_iou = box_ious[obj_to_img==i].view(-1).cpu().numpy()
box_refine = None
if args.box_refine:
box_refine = boxes_refine[obj_to_img==i].cpu().numpy()
box_refine_iou = box_refine_ious[obj_to_img==i].view(-1).cpu().numpy()
''' layout '''
if args.gene_layout:
gene_pred = gene_preds[i].cpu().numpy().astype('uint8')
output[name[i]] = {
'obj':obj,
'box_gt':boxes[obj_to_img==i].cpu().numpy(),
'box_pred':box_pred,
'box_iou':box_iou,
'box_refine':box_refine if args.box_refine else None,
'box_refine_iou':box_refine_iou if args.box_refine else None,
'gene_pred':gene_pred if args.gene_layout else None,
'gene_acc_all': gene_acc_all[i].item() if args.gene_layout else None,
'gene_acc_fg':gene_acc_fg[i].item() if args.gene_layout else None
}
return {
'pred':[
boxes_pred,#0
gene_preds if args.gene_layout else None,#1
boxes_refine if args.box_refine else None,#2
],
'gt':[layout,boxes]
}
test_evaluator = Engine(test)
MetricAverage(output_transform=lambda output:iou(output['pred'][0],output['gt'][1])).attach(test_evaluator,'box_iou')
if args.gene_layout:
MetricAverage(output_transform=lambda output:image_acc_ignore(output['pred'][1],output['gt'][0],13)).attach(test_evaluator,'gene_acc')
MetricAverage(output_transform=lambda output:image_acc(output['pred'][1],output['gt'][0])).attach(test_evaluator,'gene_acc_all')
if args.box_refine:
MetricAverage(output_transform=lambda output:iou(output['pred'][2],output['gt'][1])).attach(test_evaluator,'box_refine_iou')
ProgressBar(persist=False).attach(test_evaluator)
@test_evaluator.on(Events.COMPLETED)
def save_metrics(engine):
metrics = engine.state.metrics
with open(f'{output_dir}/output_{start_time}_metrics.json','w') as f:
f.write(str(metrics))
if not args.skip_train:
test_evaluator.run(valid_loader)
else:
test_evaluator.run(test_loader)
with open(f'{output_dir}/output_{start_time}.pkl','wb') as f:
pickle.dump(output,f,pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
args = parse_args()
args.argv = ' '.join(sys.argv)
main(args)
|