File size: 16,249 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import copy

room_label = [(0, 'LivingRoom', 1, "PublicArea",[220, 213, 205]),
              (1, 'MasterRoom', 0, "Bedroom",[138, 113, 91]),
              (2, 'Kitchen', 1, "FunctionArea",[244, 245, 247]),
              (3, 'Bathroom', 0, "FunctionArea",[224, 225, 227]),
              (4, 'DiningRoom', 1, "FunctionArea",[200, 193, 185]),
              (5, 'ChildRoom', 0, "Bedroom",[198, 173, 151]),
              (6, 'StudyRoom', 0, "Bedroom",[178, 153, 131]),
              (7, 'SecondRoom', 0, "Bedroom",[158, 133, 111]),
              (8, 'GuestRoom', 0, "Bedroom",[189, 172, 146]),
              (9, 'Balcony', 1, "PublicArea",[244, 237, 224]),
              (10, 'Entrance', 1, "PublicArea",[238, 235, 230]),
              (11, 'Storage', 0, "PublicArea",[226, 220, 206]),
              (12, 'Wall-in', 0, "PublicArea",[226, 220, 206]),
              (13, 'External', 0, "External",[255, 255, 255]),
              (14, 'ExteriorWall', 0, "ExteriorWall",[0, 0, 0]),
              (15, 'FrontDoor', 0, "FrontDoor",[255,255,0]),
              (16, 'InteriorWall', 0, "InteriorWall",[128,128,128]),
              (17, 'InteriorDoor', 0, "InteriorDoor",[255,255,255])]

class DirectedLine():
    def __init__(self,p1,p2):
        '''search direction : 0(horizontal) / 1(vertical)'''
        if np.abs(p1[0]-p2[0])<1e-6:
            self.dir = 1
            self.level = p1[0]
            self.minLevel = min(p1[1],p2[1])
            self.maxLevel = max(p1[1],p2[1])
        else:
            self.dir = 0
            self.level = p1[1]
            self.minLevel = min(p1[0],p2[0])
            self.maxLevel = max(p1[0],p2[0])
    
    def __repr__(self):
        if self.dir==0: return f'({self.level},[{self.minLevel},{self.maxLevel}])'
        else: return f'([{self.minLevel},{self.maxLevel}],{self.level})'
    
    @property
    def length(self):return self.maxLevel-self.minLevel
    
    def is_contact(self,line): 
        minl = min(self.minLevel,line.minLevel)
        maxl = max(self.maxLevel,line.maxLevel)
        length = maxl-minl
        return (
            self.dir==line.dir and 
            #self.level!=line.level and 
            abs(self.level-line.level)<6 and
            length < self.length+line.length
        )
    
    @staticmethod
    def lines_from_boundary(boundary):
        if len(boundary)==0:return []
        pts = boundary.tolist()+[boundary[0].tolist()]
        lines = [ DirectedLine(pts[i],pts[i+1]) for i in range(len(pts)-1)]
        return lines

class DirectedWall():
    def __init__(self):
        '''orientation : 0(right) / 1(down) / 2(left) / 3(up)'''
        self.dir = 0
        self.rect = np.array([0,0,0,0])
    
    @property
    def width(self):return self.rect[2]
    
    @property
    def height(self):return self.rect[3]
    
    @property
    def center(self):return self.rect[:2]+self.rect[2:]/2
    
    def setX(self,x):self.rect[0]=x
    def setY(self,y):self.rect[1]=y
    def setWidth(self,w):self.rect[2]=w
    def setHeight(self,h):self.rect[2]=h
    def setLeft(self,x):
        self.rect[2]=(self.rect[0]-x)+self.rect[2]
        self.rect[0]=x
    def setTop(self,y):
        self.rect[3]=(self.rect[1]-y)+self.rect[3]
        self.rect[1]=y
    
    def to_line(self):
        if self.dir in [0,2]:
            return DirectedLine([self.rect[0],self.rect[1]],[self.rect[0],self.rect[1]+self.rect[3]])
        else:
            return DirectedLine([self.rect[0],self.rect[1]],[self.rect[0]+self.rect[2],self.rect[1]])
    
    def __repr__(self):
        pos = ['right','down','left','up','None'][self.dir]
        return f'({pos},{self.rect})'

class Entry():
    def __init__(self):
        '''door type : 0(door) / 1(open wall)'''
        self.type = -1
        self.entry = None
        
    def __repr__(self):
        if self.type==0: return f'(door,{self.entry})'
        else: return f'(open wall,{self.entry})'   
        
class Room():
    def __init__(self):
        self.box = None
        self.category = None
        self.boundary = None
        
        self.map = None
        self.entry = None
        self.windows = []
    
    @property
    def label(self):return room_label[self.category][1]
    
    @property
    def type(self): return room_label[self.category][3]
    
    @property
    def center(self): return self.box.reshape(-1,2).mean(0)

    @staticmethod
    def rooms_from_data(data):
        rooms = []
        for i in range(len(data.rType)):
            room = Room()
            room.box = data.newBox[i]
            room.category = data.rType[i]
            room.boundary = data.rBoundary[i]
            room.lines = DirectedLine.lines_from_boundary(room.boundary)
            rooms.append(room)
        return rooms

    @staticmethod
    def from_node_box(node,box):
        x0,y0,x1,y1 = box
        room = Room()
        room.box = box
        room.category = node[-1]
        room.boundary = np.array([
                [x0,y0],
                [x0,y1],
                [x1,y1],
                [x1,y0]
            ])
        room.lines = DirectedLine.lines_from_boundary(room.boundary)
        # room.boundary = [
        #     DirectedLine((x0,y0),(x1,y0)), # top
        #     DirectedLine((x1,y0),(x1,y1)), # right
        #     DirectedLine((x0,y1),(x1,y1)), # bottom
        #     DirectedLine((x0,y0),(x0,y1)), # left
        #     ]
        return room
        
    @staticmethod
    def from_boundary(boundary):
        # pts = boundary[:,:2].tolist()
        # pts = pts+[pts[0]]
        room = Room()
        
        room.category = 0
        room.box = np.array([np.min(boundary[:,0]),np.min(boundary[:,1]),np.max(boundary[:,0]),np.max(boundary[:,1])])
        room.boundary = boundary[:,:2]
        room.lines = DirectedLine.lines_from_boundary(room.boundary)
        # room.boundary = [
        #     DirectedLine(pts[i],pts[i+1])
        #     for i in range(len(pts)-1)
        #     ]
        return room
        
    def __repr__(self):
        return f'({self.label},{self.type},{self.box},{self.entry},{self.windows})'
        
def find_contact_walls(room1,room2,reverse=False):
    contactWalls = []
    lines1 = copy.deepcopy(room1.lines) #DirectedLine.from_boundary(room1.boundary)#room1.lines
    center1 = room1.center
    lines2 = copy.deepcopy(room2.lines) #DirectedLine.from_boundary(room2.boundary)# room2.lines
    center2 = room2.center
    temp = []
    
    for i in range(len(lines1)):
        line1 = lines1[i]
        
        for j in range(len(lines2)):
            line2 = lines2[j]
            
            if line1.is_contact(line2):
                contactWall = DirectedWall()
                if line1.dir==0:
                    minh = line1.level if not reverse else line2.level #min(line1.level,line2.level)
                    maxh = line1.level if not reverse else line2.level #max(line1.level,line2.level)
                    minw = max(line1.minLevel,line2.minLevel)
                    maxw = min(line1.maxLevel,line2.maxLevel)
                    # @todo:boudanry not work!
                    if center1[1] > line1.level: contactWall.dir=1
                    else: contactWall.dir=3
                    contactWall.rect = np.array([minw,minh,maxw-minw,maxh-minh])
                else:
                    minw = line1.level if not reverse else line2.level#min(line1.level,line2.level)
                    maxw = line1.level if not reverse else line2.level#max(line1.level,line2.level)
                    minh = max(line1.minLevel,line2.minLevel)
                    maxh = min(line1.maxLevel,line2.maxLevel)
                    if center1[0] > line1.level: contactWall.dir=0
                    else: contactWall.dir=2
                    contactWall.rect = np.array([minw,minh,maxw-minw,maxh-minh])
                contactWalls.append(contactWall)
    return contactWalls

def find_longest_wall(contactWalls,dtype=1):
    contactLength = 0
    openWall = None
    for i in range(len(contactWalls)):
        maxLength = max(contactWalls[i].width,contactWalls[i].height)
        if maxLength>contactLength:
            contactLength = maxLength
            openWall = contactWalls[i]
    if contactLength!=0:
        # @todo: adjust door
        openWall = adjust_door(openWall,dtype)
        entry = Entry()
        entry.type = dtype
        entry.entry = openWall
        assert entry.entry.dir!=-1, "find longest wall with dir -1!"
        return entry
    return None

def find_closest_wall(candidateDoors,frontDoorCenter,dtype=1,boundary_lines=[]):
    dis = 1e8
    door = None
    for i in range(len(candidateDoors)):
        maxLength = max(candidateDoors[i].width,candidateDoors[i].height)
        if maxLength<12:continue

        valid = True
        line = candidateDoors[i].to_line()
        for b_line in boundary_lines:
            if line.is_contact(b_line):
                valid = False
                break
        if not valid: continue

        center = candidateDoors[i].center
        candidateDis = np.sum(np.power((center-frontDoorCenter),2))
        if dis>candidateDis:
            dis = candidateDis
            door = candidateDoors[i]
    if door is not None:
        door = adjust_door(door,dtype)
        entry = Entry()
        entry.type = dtype
        entry.entry = door
        assert entry.entry.dir!=-1, "find closest wall with dir -1!"
        return entry
    return None

def adjust_door(door,dtype=1):
    if door.dir in [1,3]:
        if dtype==1: 
            door.rect[0] = door.rect[0]+door.rect[2]/8
            door.rect[2] = door.rect[2]*3/4
        else:
            # door.rect[0] = door.center[0]-6
            door.rect[2] = min(2*6,door.rect[2])
    else:
        if dtype==1:
            door.rect[1] = door.rect[1]+door.rect[3]/8
            door.rect[3] = door.rect[3]*3/4
        else:
            # door.rect[1] = door.center[1]-6
            door.rect[3] = min(2*6,door.rect[3])
    return door

def add_interior_door(rooms,living_idx,house):
    frontDoorCenter = house.boundary[:2].mean(0)
    for i in range(len(rooms)):
        if i==living_idx:continue
        # 1. Balcony: find the longest door
        # 2. Public Area: find the longest door
        # 3. Others:
        #    3.1 Contact with living room: find the cloest door with the front door
        #    3.2 Others: find the longest wall
        if rooms[i].label == 'Balcony':
            contactWalls = []
            for j in range(len(rooms)):
                if i!=j:
                    contactWalls.extend(find_contact_walls(rooms[i],rooms[j]))
            
            rooms[i].entry = find_longest_wall(contactWalls,dtype=1)
        else:
            contactWalls = find_contact_walls(rooms[i],rooms[living_idx])
            if len(contactWalls)>0:
                if rooms[i].type == 'PublicArea':
                    rooms[i].entry = find_longest_wall(contactWalls,dtype=1)
                else:
                    candidateDoors = [ 
                        wall for wall in contactWalls 
                        if (wall.width>wall.height and wall.width>2*6) or 
                        (wall.height>wall.width and wall.height>2*6)
                    ]
                    if len(candidateDoors)==0:
                        rooms[i].entry = find_longest_wall(contactWalls,dtype=0)
                    else:
                        rooms[i].entry = find_closest_wall(contactWalls,frontDoorCenter,dtype=0,boundary_lines=house.lines)
            else:
                contactWalls = []
                for j in range(len(rooms)):
                    if i!=j:
                        contactWalls.extend(find_contact_walls(rooms[i],rooms[j]))
                if len(contactWalls)>0:
                    rooms[i].entry = find_closest_wall(contactWalls,frontDoorCenter,dtype=1,boundary_lines=house.lines)
            
    return rooms

def find_windows(contactWalls,wtypes=['mid'],keep_longest=False):
    windows = []
    contactLength = 1e8
    for i in range(len(contactWalls)):
        contactWall = contactWalls[i]
        maxLength = max(contactWall.width,contactWall.height)
        if ('large' in wtypes and maxLength>3*12):
            contactWalls[i] = adjust_window(contactWalls[i],'large')
            windows.append(contactWall)
        elif 'mid' in wtypes and maxLength>3*9:
            contactWalls[i] = adjust_window(contactWalls[i],'mid')
            windows.append(contactWall)
        elif 'small' in wtypes and maxLength>2*5:
            contactWalls[i] = adjust_window(contactWalls[i],'small')
            windows.append(contactWall)
        elif 'balcony' in wtypes and maxLength>2*5:
            contactWalls[i] = adjust_window(contactWalls[i],'balcony')
            windows.append(contactWall)
    return windows

def find_window_by_length(contactWalls,wtypes=['mid'],ltype='max'):
    window = None
    contactLength = 0 if ltype=='max' else 1e8
    ufunc = np.greater if ltype=='max' else np.less
    for i in range(len(contactWalls)):
        contactWall = contactWalls[i]
        maxLength = max(contactWall.width,contactWall.height)
        if ufunc(maxLength,contactLength):
            if 'large' in wtypes and maxLength>3*12:
                contactWalls[i] = adjust_window(contactWalls[i],'large')
                window = contactWalls[i]
                contactLength = maxLength
            elif 'mid' in wtypes and maxLength>3*9:
                contactWalls[i] = adjust_window(contactWalls[i],'mid')
                window = contactWalls[i]
                contactLength = maxLength
            elif 'small' in wtypes and maxLength>2*5:
                contactWalls[i] = adjust_window(contactWalls[i],'small')
                window = contactWalls[i]
                contactLength = maxLength
    return [window] if window is not None else []

def adjust_window(window,wtype='mid'):
    hl = {'small':5,'mid':9,'large':12}
    if window.dir in [1,3]:
        if wtype=='balcony':
            window.rect[0] = window.rect[0]+window.rect[2]/10
            window.rect[2] = window.rect[2]*4/5
        else:
            length = hl[wtype]
            window.rect[0] = window.center[0]-length
            window.rect[2] = 2*length
    else:
        if wtype=='balcony':
            window.rect[1] = window.rect[1]+window.rect[3]/10
            window.rect[3] = window.rect[3]*4/5
        else:
            length = hl[wtype]
            window.rect[1] = window.center[1]-length
            window.rect[3] = 2*length
    return window

def add_window(rooms,house):
    for i in range(len(rooms)):
        # 1. Balcony: small(half=5)
        # 2. Living Room: mid(half=9),large(half=12)
        # 3. Bathroom: shortest wall, small
        # 4. Others: longest wall, mid
        contactWalls = find_contact_walls(rooms[i],house,reverse=True)
        if rooms[i].label == 'Balcony':
            rooms[i].windows.extend(find_windows(contactWalls,['balcony']))
        elif rooms[i].label == 'LivingRoom':
            rooms[i].windows.extend(find_windows(contactWalls,['mid','large']))
        elif rooms[i].label == 'Bathroom':
            rooms[i].windows.extend(find_window_by_length(contactWalls,['small'],'min'))
        else:
            rooms[i].windows.extend(find_window_by_length(contactWalls,['mid'],'max'))
    return rooms

def rooms_to_numpy(rooms):
    doors = []
    windows = []
    for i in range(len(rooms)):
        if rooms[i].entry is not None:
            door = rooms[i].entry.entry
            doors.append([i,door.rect[0],door.rect[1],door.rect[2],door.rect[3],door.dir])
        if len(rooms[i].windows) > 0:
            ws = [[i,w.rect[0],w.rect[1],w.rect[2],w.rect[3],w.dir] for w in rooms[i].windows]
            windows.extend(ws)
    return np.array(doors),np.array(windows)

def add_door_window(data):
    boundary = data.boundary
    living_idx = np.where(data.rType==0)[0][0]
    rooms = Room.rooms_from_data(data)
    house = Room.from_boundary(boundary[:,:2])
    house.lines = house.lines[1:]    

    rooms = add_interior_door(rooms,living_idx,house)
    rooms = add_window(rooms,house)
    
    return rooms_to_numpy(rooms)

def add_dw_fp(data):
    doors,windows = add_door_window(data)
    data.doors = doors
    data.windows = windows
    return data