File size: 8,113 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import scipy.io as sio
import numpy as np
import cv2
import copy
from .utils import *


class FloorPlan():

    def __init__(self, data, train=False, rot=None):
        self.data = copy.deepcopy(data)
        self._get_rot()
        if rot is not None:
            if train:
                boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]
                boxes = align_box(boxes, self.rot, rot)[:, [1, 0, 3, 2]]
                self.data.box[:, :4] = boxes
            points = self.data.boundary[:, :2][:, [1, 0]]
            points = align_points(points, self.rot, rot)[:, [1, 0]]
            self.data.boundary[:, :2] = points
            self._get_rot()

    def _get_rot(self):
        door_line = self.data.boundary[:2, :2]  # [:,[1,0]]
        c = door_line.mean(0) - np.array([127.5,127.5])
        theta = np.arctan2(c[1], c[0]) + np.pi  # [-pi,pi]
        self.rot = theta

    def get_input_boundary(self, tensor=True):
        external = self.data.boundary[:, :2]
        door = self.data.boundary[:2, :2]

        boundary = np.zeros((128, 128), dtype=float)
        inside = np.zeros((128, 128), dtype=float)
        front = np.zeros((128, 128), dtype=float)

        pts = np.concatenate([external, external[:1]]) // 2
        pts_door = door // 2

        cv2.fillPoly(inside, pts.reshape(1, -1, 2), 1.0)
        cv2.polylines(boundary, pts.reshape(1, -1, 2), True, 1.0, 3)
        cv2.polylines(boundary, pts_door.reshape(1, -1, 2), True, 0.5, 3)
        cv2.polylines(front, pts_door.reshape(1, -1, 2), True, 1.0, 3)

        input_image = np.stack([inside, boundary, front], -1)
        if tensor: input_image = torch.tensor(input_image).permute((2, 0, 1)).float()
        return input_image

    def get_inside_box(self, tensor=True):
        external = self.data.boundary[:, :2]

        X, Y = np.linspace(0, 1, 256), np.linspace(0, 1, 256)
        x0, x1 = np.min(external[:, 0]), np.max(external[:, 0])
        y0, y1 = np.min(external[:, 1]), np.max(external[:, 1])
        box = np.array([[X[x0], Y[y0], X[x1], Y[y1]]])
        if tensor: box = torch.tensor(box).float()
        return box

    def get_rooms(self, tensor=True):
        rooms = self.data.box[:, -1]
        if tensor: rooms = torch.tensor(rooms).long()
        return rooms

    def get_attributes(self, gsize=5, alevel=10, relative=True, tensor=True):
        boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]
        external = self.data.boundary

        h, w = 256, 256
        if relative:
            external = np.asarray(external)
            x0, x1 = np.min(external[:, 0]), np.max(external[:, 0])
            y0, y1 = np.min(external[:, 1]), np.max(external[:, 1])
            h, w = y1 - y0, x1 - x0
            boxes = boxes - np.array([y0, x0, y0, x0], dtype=float)
        boxes /= np.array([h, w, h, w])
        boxes[:, 2:] -= boxes[:, :2]  # y1,x1->h,w
        boxes[:, :2] += boxes[:, 2:] / 2  # y0,x0->yc,xc
        
        l = len(boxes)
        gbins = np.linspace(0,1,gsize+1) # [1,gsize]
        gbins[0],gbins[-1]=-np.inf,np.inf
        abins = np.linspace(0,1,alevel+1) # [1,gsize]
        abins[0],abins[-1]=-np.inf,np.inf

        attributes = np.zeros((l,gsize*gsize+alevel))
        # pos: xc*gsize+yc*gsize*gsize
        attributes[range(l),(np.digitize(boxes[:,0],gbins)-1)*gsize+np.digitize(boxes[:,1],gbins)-1]=1
        # area:(w*h)
        attributes[range(l),gsize*gsize+np.digitize(boxes[:,2:].prod(1),abins)-1]=1
        if tensor: attributes = torch.tensor(attributes).float()
        return attributes

    def get_triples(self, random=False, tensor=True):
        boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]

        triples = []
        # add edge relation
        for u, v, _ in self.data.edge:
            uy0, ux0, uy1, ux1 = boxes[u]
            vy0, vx0, vy1, vx1 = boxes[v]
            uc = (uy0 + uy1) / 2, (ux0 + ux1) / 2
            vc = (vy0 + vy1) / 2, (vx0 + vx1) / 2

            # surrounding/inside -> X four quadrants
            if ux0 < vx0 and ux1 > vx1 and uy0 < vy0 and uy1 > vy1:
                relation = 'surrounding'
            elif ux0 >= vx0 and ux1 <= vx1 and uy0 >= vy0 and uy1 <= vy1:
                relation = 'inside'
            else:
                relation = point_box_relation(uc, boxes[v])

            triples.append([u, vocab['pred_name_to_idx'][relation], v])

        triples = np.array(triples, dtype=int)
        if tensor: triples = torch.tensor(triples).long()
        return triples

    def vis_box(self):
        h, w = 128, 128
        image = np.full((h, w, 4), 0, dtype=np.uint8)

        boxes = self.data.box[:, :4] // 2
        objs = self.data.box[:, -1]

        for i, obj in enumerate(objs):
            if obj == 14: continue
            color = colormap_255[obj]
            box = boxes[i]
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (color[0], color[1], color[2], 255), 3)

        return image

    def get_test_data(self, tensor=True):
        boundary = self.get_input_boundary(tensor=tensor)
        inside_box = self.get_inside_box(tensor=tensor)
        rooms = self.get_rooms(tensor=tensor)
        attrs = self.get_attributes(tensor=tensor)
        triples = self.get_triples(random=False, tensor=tensor)
        return boundary, inside_box, rooms, attrs, triples

    def adapt_graph(self, fp_graph):
        fp = FloorPlan(fp_graph.data, train=True, rot=self.rot)
        g_external = fp.data.boundary[:, :2]
        gx0, gx1 = np.min(g_external[:, 0]), np.max(g_external[:, 0])
        gy0, gy1 = np.min(g_external[:, 1]), np.max(g_external[:, 1])
        gw, gh = gx1 - gx0, gy1 - gy0

        fp.data.boundary = self.data.boundary
        b_external = self.data.boundary[:, :2]
        bx0, bx1 = np.min(b_external[:, 0]), np.max(b_external[:, 0])
        by0, by1 = np.min(b_external[:, 1]), np.max(b_external[:, 1])
        bh, bw = by1 - by0, bx1 - bx0
        box_adapter = lambda box: (((box - np.array([gx0, gy0, gx0, gy0])) * np.array([bw, bh, bw, bh])) / np.array(
            [gw, gh, gw, gh]) + np.array([bx0, by0, bx0, by0])).astype(int)

        fp.data.box[:, :4] = np.apply_along_axis(box_adapter, 1, fp.data.box[:, :4])
        return fp

    def adjust_graph(self):
        external = self.data.boundary[:, :2]
        bx0, bx1 = np.min(external[:, 0]), np.max(external[:, 0])
        by0, by1 = np.min(external[:, 1]), np.max(external[:, 1])
        hw_b = np.array([by1 - by0, bx1 - bx0])
        step = hw_b / 10

        pts = np.concatenate([external, external[:1]])
        mask = np.zeros((256, 256), dtype=np.uint8)
        cv2.fillPoly(mask, pts.reshape(1, -1, 2), 255)
        # plt.imshow(mask)
        # plt.show()
        mask = cv2.resize(mask[by0:by1 + 1, bx0:bx1 + 1], (10, 10))
        # plt.imshow(mask)
        # plt.show()
        mask[mask > 0] = 255

        outside_rooms = []
        for i in range(len(self.data.box)):
            box = self.data.box[i][:4][[1, 0, 3, 2]]
            center = (box[:2] + box[2:]) / 2
            center55 = ((center - np.array([by0, bx0])) * 10 / hw_b).astype(int)

            if not mask[center55[0], center55[1]]:
                outside_rooms.append([i, center55])

        candicate_coords55 = {}
        for i, coords55 in outside_rooms:
            row, col = coords55
            # left/right/up/down
            candicate_coords55[i] = np.array([
                next((col-c for c in range(col,-1,-1) if mask[row,c]==255),255),
                next((c-col for c in range(col+1,5) if mask[row,c]==255),255),
                next((row-r for r in range(row,-1,-1) if mask[r,col]==255),255),
                next((r-row for r in range(row+1,5) if mask[r,col]==255),255)])

        signs = np.array([
            [0, -1, 0, -1],
            [0, 1, 0, 1],
            [-1, 0, -1, 0],
            [1, 0, 1, 0]
        ])

        for i, coords55 in outside_rooms:
            deltas = candicate_coords55[i]
            idx = np.argmin(deltas)
            self.data.box[i, :4] += (signs[idx] * deltas[idx] * np.tile(step, 2)).astype(int)[[1, 0, 3, 2]]


if __name__ == "__main__":
    pass