Spaces:
Runtime error
Runtime error
File size: 8,113 Bytes
06db6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import torch
import scipy.io as sio
import numpy as np
import cv2
import copy
from .utils import *
class FloorPlan():
def __init__(self, data, train=False, rot=None):
self.data = copy.deepcopy(data)
self._get_rot()
if rot is not None:
if train:
boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]
boxes = align_box(boxes, self.rot, rot)[:, [1, 0, 3, 2]]
self.data.box[:, :4] = boxes
points = self.data.boundary[:, :2][:, [1, 0]]
points = align_points(points, self.rot, rot)[:, [1, 0]]
self.data.boundary[:, :2] = points
self._get_rot()
def _get_rot(self):
door_line = self.data.boundary[:2, :2] # [:,[1,0]]
c = door_line.mean(0) - np.array([127.5,127.5])
theta = np.arctan2(c[1], c[0]) + np.pi # [-pi,pi]
self.rot = theta
def get_input_boundary(self, tensor=True):
external = self.data.boundary[:, :2]
door = self.data.boundary[:2, :2]
boundary = np.zeros((128, 128), dtype=float)
inside = np.zeros((128, 128), dtype=float)
front = np.zeros((128, 128), dtype=float)
pts = np.concatenate([external, external[:1]]) // 2
pts_door = door // 2
cv2.fillPoly(inside, pts.reshape(1, -1, 2), 1.0)
cv2.polylines(boundary, pts.reshape(1, -1, 2), True, 1.0, 3)
cv2.polylines(boundary, pts_door.reshape(1, -1, 2), True, 0.5, 3)
cv2.polylines(front, pts_door.reshape(1, -1, 2), True, 1.0, 3)
input_image = np.stack([inside, boundary, front], -1)
if tensor: input_image = torch.tensor(input_image).permute((2, 0, 1)).float()
return input_image
def get_inside_box(self, tensor=True):
external = self.data.boundary[:, :2]
X, Y = np.linspace(0, 1, 256), np.linspace(0, 1, 256)
x0, x1 = np.min(external[:, 0]), np.max(external[:, 0])
y0, y1 = np.min(external[:, 1]), np.max(external[:, 1])
box = np.array([[X[x0], Y[y0], X[x1], Y[y1]]])
if tensor: box = torch.tensor(box).float()
return box
def get_rooms(self, tensor=True):
rooms = self.data.box[:, -1]
if tensor: rooms = torch.tensor(rooms).long()
return rooms
def get_attributes(self, gsize=5, alevel=10, relative=True, tensor=True):
boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]
external = self.data.boundary
h, w = 256, 256
if relative:
external = np.asarray(external)
x0, x1 = np.min(external[:, 0]), np.max(external[:, 0])
y0, y1 = np.min(external[:, 1]), np.max(external[:, 1])
h, w = y1 - y0, x1 - x0
boxes = boxes - np.array([y0, x0, y0, x0], dtype=float)
boxes /= np.array([h, w, h, w])
boxes[:, 2:] -= boxes[:, :2] # y1,x1->h,w
boxes[:, :2] += boxes[:, 2:] / 2 # y0,x0->yc,xc
l = len(boxes)
gbins = np.linspace(0,1,gsize+1) # [1,gsize]
gbins[0],gbins[-1]=-np.inf,np.inf
abins = np.linspace(0,1,alevel+1) # [1,gsize]
abins[0],abins[-1]=-np.inf,np.inf
attributes = np.zeros((l,gsize*gsize+alevel))
# pos: xc*gsize+yc*gsize*gsize
attributes[range(l),(np.digitize(boxes[:,0],gbins)-1)*gsize+np.digitize(boxes[:,1],gbins)-1]=1
# area:(w*h)
attributes[range(l),gsize*gsize+np.digitize(boxes[:,2:].prod(1),abins)-1]=1
if tensor: attributes = torch.tensor(attributes).float()
return attributes
def get_triples(self, random=False, tensor=True):
boxes = self.data.box[:, :4][:, [1, 0, 3, 2]]
triples = []
# add edge relation
for u, v, _ in self.data.edge:
uy0, ux0, uy1, ux1 = boxes[u]
vy0, vx0, vy1, vx1 = boxes[v]
uc = (uy0 + uy1) / 2, (ux0 + ux1) / 2
vc = (vy0 + vy1) / 2, (vx0 + vx1) / 2
# surrounding/inside -> X four quadrants
if ux0 < vx0 and ux1 > vx1 and uy0 < vy0 and uy1 > vy1:
relation = 'surrounding'
elif ux0 >= vx0 and ux1 <= vx1 and uy0 >= vy0 and uy1 <= vy1:
relation = 'inside'
else:
relation = point_box_relation(uc, boxes[v])
triples.append([u, vocab['pred_name_to_idx'][relation], v])
triples = np.array(triples, dtype=int)
if tensor: triples = torch.tensor(triples).long()
return triples
def vis_box(self):
h, w = 128, 128
image = np.full((h, w, 4), 0, dtype=np.uint8)
boxes = self.data.box[:, :4] // 2
objs = self.data.box[:, -1]
for i, obj in enumerate(objs):
if obj == 14: continue
color = colormap_255[obj]
box = boxes[i]
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (color[0], color[1], color[2], 255), 3)
return image
def get_test_data(self, tensor=True):
boundary = self.get_input_boundary(tensor=tensor)
inside_box = self.get_inside_box(tensor=tensor)
rooms = self.get_rooms(tensor=tensor)
attrs = self.get_attributes(tensor=tensor)
triples = self.get_triples(random=False, tensor=tensor)
return boundary, inside_box, rooms, attrs, triples
def adapt_graph(self, fp_graph):
fp = FloorPlan(fp_graph.data, train=True, rot=self.rot)
g_external = fp.data.boundary[:, :2]
gx0, gx1 = np.min(g_external[:, 0]), np.max(g_external[:, 0])
gy0, gy1 = np.min(g_external[:, 1]), np.max(g_external[:, 1])
gw, gh = gx1 - gx0, gy1 - gy0
fp.data.boundary = self.data.boundary
b_external = self.data.boundary[:, :2]
bx0, bx1 = np.min(b_external[:, 0]), np.max(b_external[:, 0])
by0, by1 = np.min(b_external[:, 1]), np.max(b_external[:, 1])
bh, bw = by1 - by0, bx1 - bx0
box_adapter = lambda box: (((box - np.array([gx0, gy0, gx0, gy0])) * np.array([bw, bh, bw, bh])) / np.array(
[gw, gh, gw, gh]) + np.array([bx0, by0, bx0, by0])).astype(int)
fp.data.box[:, :4] = np.apply_along_axis(box_adapter, 1, fp.data.box[:, :4])
return fp
def adjust_graph(self):
external = self.data.boundary[:, :2]
bx0, bx1 = np.min(external[:, 0]), np.max(external[:, 0])
by0, by1 = np.min(external[:, 1]), np.max(external[:, 1])
hw_b = np.array([by1 - by0, bx1 - bx0])
step = hw_b / 10
pts = np.concatenate([external, external[:1]])
mask = np.zeros((256, 256), dtype=np.uint8)
cv2.fillPoly(mask, pts.reshape(1, -1, 2), 255)
# plt.imshow(mask)
# plt.show()
mask = cv2.resize(mask[by0:by1 + 1, bx0:bx1 + 1], (10, 10))
# plt.imshow(mask)
# plt.show()
mask[mask > 0] = 255
outside_rooms = []
for i in range(len(self.data.box)):
box = self.data.box[i][:4][[1, 0, 3, 2]]
center = (box[:2] + box[2:]) / 2
center55 = ((center - np.array([by0, bx0])) * 10 / hw_b).astype(int)
if not mask[center55[0], center55[1]]:
outside_rooms.append([i, center55])
candicate_coords55 = {}
for i, coords55 in outside_rooms:
row, col = coords55
# left/right/up/down
candicate_coords55[i] = np.array([
next((col-c for c in range(col,-1,-1) if mask[row,c]==255),255),
next((c-col for c in range(col+1,5) if mask[row,c]==255),255),
next((row-r for r in range(row,-1,-1) if mask[r,col]==255),255),
next((r-row for r in range(row+1,5) if mask[r,col]==255),255)])
signs = np.array([
[0, -1, 0, -1],
[0, 1, 0, 1],
[-1, 0, -1, 0],
[1, 0, 1, 0]
])
for i, coords55 in outside_rooms:
deltas = candicate_coords55[i]
idx = np.argmin(deltas)
self.data.box[i, :4] += (signs[idx] * deltas[idx] * np.tile(step, 2)).astype(int)[[1, 0, 3, 2]]
if __name__ == "__main__":
pass
|