Spaces:
Runtime error
Runtime error
File size: 11,762 Bytes
06db6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
#!/usr/bin/python
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import torch
import torch.nn as nn
from torch.nn.functional import interpolate
class PPM(nn.Module):
def __init__(self, in_dim, reduction_dim, bins, BatchNorm):
super(PPM, self).__init__()
self.features = []
for bin in bins:
self.features.append(nn.Sequential(
nn.AdaptiveAvgPool2d(bin),
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
BatchNorm(reduction_dim),
#nn.ReLU(inplace=True)
nn.LeakyReLU(inplace=True)
))
self.features = nn.ModuleList(self.features)
def forward(self, x):
x_size = x.size()
out = [x]
for f in self.features:
out.append(interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
return torch.cat(out, 1)
def get_normalization_2d(channels, normalization):
if normalization == 'instance':
return nn.InstanceNorm2d(channels)
elif normalization == 'batch':
return nn.BatchNorm2d(channels)
elif normalization == 'none':
return None
else:
raise ValueError('Unrecognized normalization type "%s"' % normalization)
def get_activation(name):
kwargs = {}
if name.lower().startswith('leakyrelu'):
if '-' in name:
slope = float(name.split('-')[1])
kwargs = {'negative_slope': slope}
name = 'leakyrelu'
activations = {
'relu': nn.ReLU,
'leakyrelu': nn.LeakyReLU,
}
if name.lower() not in activations:
raise ValueError('Invalid activation "%s"' % name)
return activations[name.lower()](**kwargs)
def _init_conv(layer, method):
if not isinstance(layer, nn.Conv2d):
return
if method == 'default':
return
elif method == 'kaiming-normal':
nn.init.kaiming_normal(layer.weight)
elif method == 'kaiming-uniform':
nn.init.kaiming_uniform(layer.weight)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
def __repr__(self):
return 'Flatten()'
class Unflatten(nn.Module):
def __init__(self, size):
super(Unflatten, self).__init__()
self.size = size
def forward(self, x):
return x.view(*self.size)
def __repr__(self):
size_str = ', '.join('%d' % d for d in self.size)
return 'Unflatten(%s)' % size_str
class GlobalAvgPool(nn.Module):
def forward(self, x):
N, C = x.size(0), x.size(1)
return x.view(N, C, -1).mean(dim=2)
class ResidualBlock(nn.Module):
def __init__(self, channels, normalization='batch', activation='relu',
padding='same', kernel_size=3, init='default'):
super(ResidualBlock, self).__init__()
K = kernel_size
P = _get_padding(K, padding)
C = channels
self.padding = P
layers = [
get_normalization_2d(C, normalization),
get_activation(activation),
nn.Conv2d(C, C, kernel_size=K, padding=P),
get_normalization_2d(C, normalization),
get_activation(activation),
nn.Conv2d(C, C, kernel_size=K, padding=P),
]
layers = [layer for layer in layers if layer is not None]
for layer in layers:
_init_conv(layer, method=init)
self.net = nn.Sequential(*layers)
def forward(self, x):
P = self.padding
shortcut = x
if P == 0:
shortcut = x[:, :, P:-P, P:-P]
y = self.net(x)
return shortcut + self.net(x)
def _get_padding(K, mode):
""" Helper method to compute padding size """
if mode == 'valid':
return 0
elif mode == 'same':
assert K % 2 == 1, 'Invalid kernel size %d for "same" padding' % K
return (K - 1) // 2
def build_cnn(arch, normalization='batch', activation='leakyrelu', padding='same',
pooling='max', init='default'):
"""
Build a CNN from an architecture string, which is a list of layer
specification strings. The overall architecture can be given as a list or as
a comma-separated string.
All convolutions *except for the first* are preceeded by normalization and
nonlinearity.
All other layers support the following:
- IX: Indicates that the number of input channels to the network is X.
Can only be used at the first layer; if not present then we assume
3 input channels.
- CK-X: KxK convolution with X output channels
- CK-X-S: KxK convolution with X output channels and stride S
- R: Residual block keeping the same number of channels
- UX: Nearest-neighbor upsampling with factor X
- PX: Spatial pooling with factor X
- FC-X-Y: Flatten followed by fully-connected layer
Returns a tuple of:
- cnn: An nn.Sequential
- channels: Number of output channels
"""
if isinstance(arch, str):
arch = arch.split(',')
cur_C = 3
if len(arch) > 0 and arch[0][0] == 'I':
cur_C = int(arch[0][1:])
arch = arch[1:]
first_conv = True
flat = False
layers = []
for i, s in enumerate(arch):
if s[0] == 'C':
if not first_conv:
layers.append(get_normalization_2d(cur_C, normalization))
layers.append(get_activation(activation))
first_conv = False
vals = [int(i) for i in s[1:].split('-')]
if len(vals) == 2:
K, next_C = vals
stride = 1
elif len(vals) == 3:
K, next_C, stride = vals
# K, next_C = (int(i) for i in s[1:].split('-'))
P = _get_padding(K, padding)
conv = nn.Conv2d(cur_C, next_C, kernel_size=K, padding=P, stride=stride)
layers.append(conv)
_init_conv(layers[-1], init)
cur_C = next_C
elif s[0] == 'R':
norm = 'none' if first_conv else normalization
res = ResidualBlock(cur_C, normalization=norm, activation=activation,
padding=padding, init=init)
layers.append(res)
first_conv = False
elif s[0] == 'U':
factor = int(s[1:])
layers.append(Interpolate(scale_factor=factor, mode='nearest'))
elif s[0] == 'P':
factor = int(s[1:])
if pooling == 'max':
pool = nn.MaxPool2d(kernel_size=factor, stride=factor)
elif pooling == 'avg':
pool = nn.AvgPool2d(kernel_size=factor, stride=factor)
layers.append(pool)
elif s[:2] == 'FC':
_, Din, Dout = s.split('-')
Din, Dout = int(Din), int(Dout)
if not flat:
layers.append(Flatten())
flat = True
layers.append(nn.Linear(Din, Dout))
if i + 1 < len(arch):
layers.append(get_activation(activation))
cur_C = Dout
else:
raise ValueError('Invalid layer "%s"' % s)
layers = [layer for layer in layers if layer is not None]
# for layer in layers:
# print(layer)
return nn.Sequential(*layers), cur_C
def build_mlp(dim_list, activation='leakyrelu', batch_norm='none',
dropout=0, final_nonlinearity=True):
layers = []
for i in range(len(dim_list) - 1):
dim_in, dim_out = dim_list[i], dim_list[i + 1]
layers.append(nn.Linear(dim_in, dim_out))
final_layer = (i == len(dim_list) - 2)
if not final_layer or final_nonlinearity:
if batch_norm == 'batch':
layers.append(nn.BatchNorm1d(dim_out))
if activation == 'relu':
layers.append(nn.ReLU())
elif activation == 'leakyrelu':
layers.append(nn.LeakyReLU())
if dropout > 0:
layers.append(nn.Dropout(p=dropout))
return nn.Sequential(*layers)
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class ConditionalBatchNorm2d(nn.Module):
def __init__(self, num_features, num_classes):
super(ConditionalBatchNorm2d).__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False)
self.embed = nn.Embedding(num_classes, num_features * 2)
self.embed.weight.data[:, :num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0
def forward(self, x, y):
out = self.bn(x)
gamma, beta = self.embed(y).chunk(2, 1)
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
return out
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
elif norm_type == 'conditional':
norm_layer = functools.partial(ConditionalBatchNorm2d)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
class Interpolate(nn.Module):
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
super(Interpolate, self).__init__()
self.size = size
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
return interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode,
align_corners=self.align_corners)
|