File size: 11,762 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/python
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools

import torch
import torch.nn as nn
from torch.nn.functional import interpolate

class PPM(nn.Module):
    def __init__(self, in_dim, reduction_dim, bins, BatchNorm):
        super(PPM, self).__init__()
        self.features = []
        for bin in bins:
            self.features.append(nn.Sequential(
                nn.AdaptiveAvgPool2d(bin),
                nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
                BatchNorm(reduction_dim),
                #nn.ReLU(inplace=True)
                nn.LeakyReLU(inplace=True)
            ))
        self.features = nn.ModuleList(self.features)

    def forward(self, x):
        x_size = x.size()
        out = [x]
        for f in self.features:
            out.append(interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
        return torch.cat(out, 1)

def get_normalization_2d(channels, normalization):
    if normalization == 'instance':
        return nn.InstanceNorm2d(channels)
    elif normalization == 'batch':
        return nn.BatchNorm2d(channels)
    elif normalization == 'none':
        return None
    else:
        raise ValueError('Unrecognized normalization type "%s"' % normalization)


def get_activation(name):
    kwargs = {}
    if name.lower().startswith('leakyrelu'):
        if '-' in name:
            slope = float(name.split('-')[1])
            kwargs = {'negative_slope': slope}
    name = 'leakyrelu'
    activations = {
        'relu': nn.ReLU,
        'leakyrelu': nn.LeakyReLU,
    }
    if name.lower() not in activations:
        raise ValueError('Invalid activation "%s"' % name)
    return activations[name.lower()](**kwargs)


def _init_conv(layer, method):
    if not isinstance(layer, nn.Conv2d):
        return
    if method == 'default':
        return
    elif method == 'kaiming-normal':
        nn.init.kaiming_normal(layer.weight)
    elif method == 'kaiming-uniform':
        nn.init.kaiming_uniform(layer.weight)


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)

    def __repr__(self):
        return 'Flatten()'


class Unflatten(nn.Module):
    def __init__(self, size):
        super(Unflatten, self).__init__()
        self.size = size

    def forward(self, x):
        return x.view(*self.size)

    def __repr__(self):
        size_str = ', '.join('%d' % d for d in self.size)
        return 'Unflatten(%s)' % size_str


class GlobalAvgPool(nn.Module):
    def forward(self, x):
        N, C = x.size(0), x.size(1)
        return x.view(N, C, -1).mean(dim=2)


class ResidualBlock(nn.Module):
    def __init__(self, channels, normalization='batch', activation='relu',
                 padding='same', kernel_size=3, init='default'):
        super(ResidualBlock, self).__init__()

        K = kernel_size
        P = _get_padding(K, padding)
        C = channels
        self.padding = P
        layers = [
            get_normalization_2d(C, normalization),
            get_activation(activation),
            nn.Conv2d(C, C, kernel_size=K, padding=P),
            get_normalization_2d(C, normalization),
            get_activation(activation),
            nn.Conv2d(C, C, kernel_size=K, padding=P),
        ]
        layers = [layer for layer in layers if layer is not None]
        for layer in layers:
            _init_conv(layer, method=init)
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        P = self.padding
        shortcut = x
        if P == 0:
            shortcut = x[:, :, P:-P, P:-P]
        y = self.net(x)
        return shortcut + self.net(x)


def _get_padding(K, mode):
    """ Helper method to compute padding size """
    if mode == 'valid':
        return 0
    elif mode == 'same':
        assert K % 2 == 1, 'Invalid kernel size %d for "same" padding' % K
        return (K - 1) // 2


def build_cnn(arch, normalization='batch', activation='leakyrelu', padding='same',
              pooling='max', init='default'):
    """
    Build a CNN from an architecture string, which is a list of layer
    specification strings. The overall architecture can be given as a list or as
    a comma-separated string.

    All convolutions *except for the first* are preceeded by normalization and
    nonlinearity.

    All other layers support the following:
    - IX: Indicates that the number of input channels to the network is X.
          Can only be used at the first layer; if not present then we assume
          3 input channels.
    - CK-X: KxK convolution with X output channels
    - CK-X-S: KxK convolution with X output channels and stride S
    - R: Residual block keeping the same number of channels
    - UX: Nearest-neighbor upsampling with factor X
    - PX: Spatial pooling with factor X
    - FC-X-Y: Flatten followed by fully-connected layer

    Returns a tuple of:
    - cnn: An nn.Sequential
    - channels: Number of output channels
    """
    if isinstance(arch, str):
        arch = arch.split(',')
    cur_C = 3
    if len(arch) > 0 and arch[0][0] == 'I':
        cur_C = int(arch[0][1:])
        arch = arch[1:]

    first_conv = True
    flat = False
    layers = []
    for i, s in enumerate(arch):
        if s[0] == 'C':
            if not first_conv:
                layers.append(get_normalization_2d(cur_C, normalization))
                layers.append(get_activation(activation))
            first_conv = False
            vals = [int(i) for i in s[1:].split('-')]
            if len(vals) == 2:
                K, next_C = vals
                stride = 1
            elif len(vals) == 3:
                K, next_C, stride = vals
            # K, next_C = (int(i) for i in s[1:].split('-'))
            P = _get_padding(K, padding)
            conv = nn.Conv2d(cur_C, next_C, kernel_size=K, padding=P, stride=stride)
            layers.append(conv)
            _init_conv(layers[-1], init)
            cur_C = next_C
        elif s[0] == 'R':
            norm = 'none' if first_conv else normalization
            res = ResidualBlock(cur_C, normalization=norm, activation=activation,
                                padding=padding, init=init)
            layers.append(res)
            first_conv = False
        elif s[0] == 'U':
            factor = int(s[1:])
            layers.append(Interpolate(scale_factor=factor, mode='nearest'))
        elif s[0] == 'P':
            factor = int(s[1:])
            if pooling == 'max':
                pool = nn.MaxPool2d(kernel_size=factor, stride=factor)
            elif pooling == 'avg':
                pool = nn.AvgPool2d(kernel_size=factor, stride=factor)
            layers.append(pool)
        elif s[:2] == 'FC':
            _, Din, Dout = s.split('-')
            Din, Dout = int(Din), int(Dout)
            if not flat:
                layers.append(Flatten())
            flat = True
            layers.append(nn.Linear(Din, Dout))
            if i + 1 < len(arch):
                layers.append(get_activation(activation))
            cur_C = Dout
        else:
            raise ValueError('Invalid layer "%s"' % s)
    layers = [layer for layer in layers if layer is not None]
    # for layer in layers:
    #   print(layer)
    return nn.Sequential(*layers), cur_C


def build_mlp(dim_list, activation='leakyrelu', batch_norm='none',
              dropout=0, final_nonlinearity=True):
    layers = []
    for i in range(len(dim_list) - 1):
        dim_in, dim_out = dim_list[i], dim_list[i + 1]
        layers.append(nn.Linear(dim_in, dim_out))
        final_layer = (i == len(dim_list) - 2)
        if not final_layer or final_nonlinearity:
            if batch_norm == 'batch':
                layers.append(nn.BatchNorm1d(dim_out))
            if activation == 'relu':
                layers.append(nn.ReLU())
            elif activation == 'leakyrelu':
                layers.append(nn.LeakyReLU())
        if dropout > 0:
            layers.append(nn.Dropout(p=dropout))
    return nn.Sequential(*layers)


class ResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)

    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim),
                       activation]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out


class ConditionalBatchNorm2d(nn.Module):
    def __init__(self, num_features, num_classes):
        super(ConditionalBatchNorm2d).__init__()
        self.num_features = num_features
        self.bn = nn.BatchNorm2d(num_features, affine=False)
        self.embed = nn.Embedding(num_classes, num_features * 2)
        self.embed.weight.data[:, :num_features].normal_(1, 0.02)  # Initialise scale at N(1, 0.02)
        self.embed.weight.data[:, num_features:].zero_()  # Initialise bias at 0

    def forward(self, x, y):
        out = self.bn(x)
        gamma, beta = self.embed(y).chunk(2, 1)
        out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
        return out


def get_norm_layer(norm_type='instance'):
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
    elif norm_type == 'conditional':
        norm_layer = functools.partial(ConditionalBatchNorm2d)
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer


class Interpolate(nn.Module):
    def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
        super(Interpolate, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        return interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode,
                           align_corners=self.align_corners)