File size: 10,127 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/python
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F

from . import box_utils


"""
Functions for computing image layouts from object vectors, bounding boxes,
and segmentation masks. These are used to compute course scene layouts which
are then fed as input to the cascaded refinement network.
"""


def boxes_to_layout(vecs, boxes, obj_to_img, H, W=None, pooling='sum'):
  """
  Inputs:
  - vecs: Tensor of shape (O, D) giving vectors
  - boxes: Tensor of shape (O, 4) giving bounding boxes in the format
    [x0, y0, x1, y1] in the [0, 1] coordinate space
  - obj_to_img: LongTensor of shape (O,) mapping each element of vecs to
    an image, where each element is in the range [0, N). If obj_to_img[i] = j
    then vecs[i] belongs to image j.
  - H, W: Size of the output

  Returns:
  - out: Tensor of shape (N, D, H, W)
  """
  O, D = vecs.size()
  if W is None:
    W = H

  grid = _boxes_to_grid(boxes, H, W)

  # If we don't add extra spatial dimensions here then out-of-bounds
  # elements won't be automatically set to 0
  img_in = vecs.view(O, D, 1, 1).expand(O, D, 8, 8)
  sampled = F.grid_sample(img_in, grid)   # (O, D, H, W)

  # Explicitly masking makes everything quite a bit slower.
  # If we rely on implicit masking the interpolated boxes end up
  # blurred around the edges, but it should be fine.
  # mask = ((X < 0) + (X > 1) + (Y < 0) + (Y > 1)).clamp(max=1)
  # sampled[mask[:, None]] = 0

  out = _pool_samples(sampled, obj_to_img, pooling=pooling)

  return out


def masks_to_layout(vecs, boxes, masks, obj_to_img, H, W=None, pooling='sum'):
  """
  Inputs:
  - vecs: Tensor of shape (O, D) giving vectors
  - boxes: Tensor of shape (O, 4) giving bounding boxes in the format
    [x0, y0, x1, y1] in the [0, 1] coordinate space
  - masks: Tensor of shape (O, M, M) giving binary masks for each object
  - obj_to_img: LongTensor of shape (O,) mapping objects to images
  - H, W: Size of the output image.

  Returns:
  - out: Tensor of shape (N, D, H, W)
  """
  O, D = vecs.size()
  M = masks.size(1)
  assert masks.size() == (O, M, M)
  if W is None:
    W = H
  grid = _boxes_to_grid(boxes, H, W)
  img_in = vecs.view(O, D, 1, 1) * masks.float().view(O, 1, M, M)
  sampled = F.grid_sample(img_in, grid)
  out = _pool_samples(sampled, obj_to_img, pooling=pooling)
  return out


def _boxes_to_grid(boxes, H, W):
  """
  Input:
  - boxes: FloatTensor of shape (O, 4) giving boxes in the [x0, y0, x1, y1]
    format in the [0, 1] coordinate space
  - H, W: Scalars giving size of output

  Returns:
  - grid: FloatTensor of shape (O, H, W, 2) suitable for passing to grid_sample
  """
  O = boxes.size(0)
  boxes = box_utils.centers_to_extents(boxes)
  boxes = boxes.view(O, 4, 1, 1)

  # w,h = boxes[:, 2], boxes[:, 3]
  # # All these are (O, 1, 1)
  # x0, y0 = boxes[:, 0]-w/2, boxes[:, 1]-h/2
  # x1, y1 = boxes[:, 0]+w/2, boxes[:, 1]+h/2

  x0, y0 = boxes[:, 0], boxes[:, 1]
  ww, hh = boxes[:, 2] - x0, boxes[:, 3] - y0
  # ww = x1 - x0
  # hh = y1 - y0

  X = torch.linspace(0, 1, steps=W).view(1, 1, W).to(boxes)
  Y = torch.linspace(0, 1, steps=H).view(1, H, 1).to(boxes)
  X = (X - x0) / ww # (O, 1, W)
  Y = (Y - y0) / hh  # (O, H, 1)
  
  # Stack does not broadcast its arguments so we need to expand explicitly
  X = X.expand(O, H, W)
  Y = Y.expand(O, H, W)
  grid = torch.stack([X, Y], dim=3)  # (O, H, W, 2)

  # Right now grid is in [0, 1] space; transform to [-1, 1]
  grid = grid.mul(2).sub(1)

  return grid


def _pool_samples(samples, obj_to_img, pooling='sum'):
  """
  Input:
  - samples: FloatTensor of shape (O, D, H, W)
  - obj_to_img: LongTensor of shape (O,) with each element in the range
    [0, N) mapping elements of samples to output images

  Output:
  - pooled: FloatTensor of shape (N, D, H, W)
  """
  dtype, device = samples.dtype, samples.device
  O, D, H, W = samples.size()
  N = obj_to_img.data.max().item() + 1
  
  # Use scatter_add to sum the sampled outputs for each image
  out = torch.zeros(N, D, H, W, dtype=dtype, device=device)
  idx = obj_to_img.view(O, 1, 1, 1).expand(O, D, H, W)
  #out = out.scatter_add(0, idx, samples)

  if pooling == 'avg':
    # Divide each output mask by the number of objects; use scatter_add again
    # to count the number of objects per image.
    out = out.scatter_add(0, idx, samples)
    ones = torch.ones(O, dtype=dtype, device=device)
    obj_counts = torch.zeros(N, dtype=dtype, device=device)
    obj_counts = obj_counts.scatter_add(0, obj_to_img, ones)
    obj_counts = obj_counts.clamp(min=1)
    out = out / obj_counts.view(N, 1, 1, 1)
  elif pooling == 'max':
    all_out = []
    obj_to_img_list = [i.item() for i in list(obj_to_img)]
    for i in range(N):
        start = obj_to_img_list.index(i)
        end = len(obj_to_img_list) - obj_to_img_list[::-1].index(i)
        all_out.append(torch.max(samples[start:end, :, :, :], dim=0)[0])
    out = torch.stack(all_out)
  elif pooling == 'sum':
    out = out.scatter_add(0, idx, samples)
    #raise ValueError('Invalid pooling "%s"' % pooling)

  return out

def masks_to_seg(boxes, masks, objs, obj_to_img, H, W=None, num_classes=15):
  """
  Inputs:
  - vecs: Tensor of shape (O, D) giving vectors
  - boxes: Tensor of shape (O, 4) giving bounding boxes in the format
    [x0, y0, x1, y1] in the [0, 1] coordinate space
  - obj_to_img: LongTensor of shape (O,) mapping each element of vecs to
    an image, where each element is in the range [0, N). If obj_to_img[i] = j
    then vecs[i] belongs to image j.
  - H, W: Size of the output

  Returns:
  - out: Tensor of shape (N, D, H, W)
  """
  dtype, device = boxes.dtype, boxes.device
  O, D = boxes.size()
  M = masks.size(1)
  assert masks.size() == (O, M, M)
  if W is None:
    W = H
  N = obj_to_img.data.max().item() + 1
  grid = _boxes_to_grid(boxes, H, W)
  mask_sampled = F.grid_sample(masks.float().view(O, 1, M, M), grid)
  seg = torch.zeros((N,num_classes,H,W)).to(device)
  # obj_to_img_list = [i.item() for i in list(obj_to_img)]
  for i in range(N):
    obj_to_i = (obj_to_img==i).nonzero().view(-1)
    # start = obj_to_img_list.index(i)
    # end = len(obj_to_img_list) - obj_to_img_list[::-1].index(i)
    # for j in range(start,end):
    for j in obj_to_i:
      obj = objs[j]
      seg[i,obj]=seg[i,obj]+mask_sampled[j]
  return seg

def boxes_to_seg(boxes, objs, obj_to_img, H, W=None,num_classes=15):
  """
  Inputs:
  - vecs: Tensor of shape (O, D) giving vectors
  - boxes: Tensor of shape (O, 4) giving bounding boxes in the format
    [x0, y0, x1, y1] in the [0, 1] coordinate space
  - obj_to_img: LongTensor of shape (O,) mapping each element of vecs to
    an image, where each element is in the range [0, N). If obj_to_img[i] = j
    then vecs[i] belongs to image j.
  - H, W: Size of the output

  Returns:
  - out: Tensor of shape (N, D, H, W)
  """
  dtype, device = boxes.dtype, boxes.device
  O, D = boxes.size()
  if W is None:
    W = H
  N = obj_to_img.data.max().item() + 1

  grid = _boxes_to_grid(boxes, H, W)
  mask_sampled = F.grid_sample(torch.ones(O,1,8,8).to(boxes), grid)
  
  seg = torch.zeros((N,num_classes,H,W)).to(device)
  obj_to_img_list = [i.item() for i in list(obj_to_img)]
  for i in range(N):
    start = obj_to_img_list.index(i)
    end = len(obj_to_img_list) - obj_to_img_list[::-1].index(i)
    for j in range(start,end):
    #obj_to_i = (obj_to_img==i).nonzero().view(-1)
    #for j in obj_to_i:
      obj = objs[j]
      seg[i,obj]=seg[i,obj]+mask_sampled[j]
  return seg

if __name__ == '__main__':
  vecs = torch.FloatTensor([
            [1, 0, 0], [0, 1, 0], [0, 0, 1],
            [1, 0, 0], [0, 1, 0], [0, 0, 1],
         ])
  boxes = torch.FloatTensor([
            [0.25, 0.125, 0.5, 0.875],
            [0, 0, 1, 0.25],
            [0.6125, 0, 0.875, 1],
            [0, 0.8, 1, 1.0],
            [0.25, 0.125, 0.5, 0.875],
            [0.6125, 0, 0.875, 1],
          ])
  obj_to_img = torch.LongTensor([0, 0, 0, 1, 1, 1])
  # vecs = torch.FloatTensor([[[1]]])
  # boxes = torch.FloatTensor([[[0.25, 0.25, 0.75, 0.75]]])
  vecs, boxes = vecs.cuda(), boxes.cuda()
  obj_to_img = obj_to_img.cuda()
  out = boxes_to_layout(vecs, boxes, obj_to_img, 256, pooling='sum')
  
  from torchvision.utils import save_image
  save_image(out.data, 'out.png')


  masks = torch.FloatTensor([
            [
              [0, 0, 1, 0, 0],
              [0, 1, 1, 1, 0],
              [1, 1, 1, 1, 1],
              [0, 1, 1, 1, 0],
              [0, 0, 1, 0, 0],
            ],
            [
              [0, 0, 1, 0, 0],
              [0, 1, 0, 1, 0],
              [1, 0, 0, 0, 1],
              [0, 1, 0, 1, 0],
              [0, 0, 1, 0, 0],
            ],
            [
              [0, 0, 1, 0, 0],
              [0, 1, 1, 1, 0],
              [1, 1, 1, 1, 1],
              [0, 1, 1, 1, 0],
              [0, 0, 1, 0, 0],
            ],
            [
              [0, 0, 1, 0, 0],
              [0, 1, 1, 1, 0],
              [1, 1, 1, 1, 1],
              [0, 1, 1, 1, 0],
              [0, 0, 1, 0, 0],
            ],
            [
              [0, 0, 1, 0, 0],
              [0, 1, 1, 1, 0],
              [1, 1, 1, 1, 1],
              [0, 1, 1, 1, 0],
              [0, 0, 1, 0, 0],
            ],
            [
              [0, 0, 1, 0, 0],
              [0, 1, 1, 1, 0],
              [1, 1, 1, 1, 1],
              [0, 1, 1, 1, 0],
              [0, 0, 1, 0, 0],
            ]
          ])
  masks = masks.cuda()
  out = masks_to_layout(vecs, boxes, masks, obj_to_img, 256)
  save_image(out.data, 'out_masks.png')