Spaces:
Runtime error
Runtime error
#!/usr/bin/python | |
# | |
# Copyright 2018 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from ignite.exceptions import NotComputableError | |
from ignite.metrics.accumulation import VariableAccumulation | |
def intersection(bbox_pred, bbox_gt): | |
max_xy = torch.min(bbox_pred[:, 2:], bbox_gt[:, 2:]) | |
min_xy = torch.max(bbox_pred[:, :2], bbox_gt[:, :2]) | |
inter = torch.clamp((max_xy - min_xy), min=0) | |
return inter[:, 0] * inter[:, 1] | |
def jaccard(bbox_pred, bbox_gt): | |
inter = intersection(bbox_pred, bbox_gt) | |
area_pred = (bbox_pred[:, 2] - bbox_pred[:, 0]) * (bbox_pred[:, 3] - | |
bbox_pred[:, 1]) | |
area_gt = (bbox_gt[:, 2] - bbox_gt[:, 0]) * (bbox_gt[:, 3] - | |
bbox_gt[:, 1]) | |
union = area_pred + area_gt - inter | |
iou = torch.div(inter, union) | |
return torch.sum(iou), (iou > 0.5).sum().item(), (iou > 0.3).sum().item() | |
def iou(bbox_pred, bbox_gt): | |
inter = intersection(bbox_pred, bbox_gt) | |
area_pred = (bbox_pred[:, 2] - bbox_pred[:, 0]) * (bbox_pred[:, 3] - | |
bbox_pred[:, 1]) | |
area_gt = (bbox_gt[:, 2] - bbox_gt[:, 0]) * (bbox_gt[:, 3] - | |
bbox_gt[:, 1]) | |
union = area_pred + area_gt - inter | |
iou = torch.div(inter, union).view(-1,1) | |
return iou | |
class MetricAverage(VariableAccumulation): | |
def __init__(self, output_transform=lambda x: x): | |
def _mean_op(a, x): | |
return a+(x.sum().item()) | |
super(MetricAverage, self).__init__(op=_mean_op, output_transform=output_transform) | |
def compute(self): | |
if self.num_examples < 1: | |
raise NotComputableError("{} must have at least one example before" | |
" it can be computed.".format(self.__class__.__name__)) | |
return self.accumulator / self.num_examples | |
def image_acc(y_pred,y): | |
B,H,W = y.shape | |
indices = y_pred | |
if y_pred.dim() == y.dim()+1: | |
indices = torch.argmax(y_pred.softmax(1), dim=1) | |
count = H*W | |
correct = torch.eq(indices.float(),y.float()).sum([1,2]) | |
acc = correct.float()/count | |
return acc.view(-1,1) | |
def image_acc_ignore(y_pred,y,ignore_index): | |
B,H,W = y.shape | |
indices = y_pred | |
if y_pred.dim() == y.dim()+1: | |
indices = torch.argmax(y_pred.softmax(1), dim=1) | |
masks = y.ne(ignore_index) | |
count = masks.sum([1,2]) | |
correct = torch.zeros(B).to(count) | |
for i in range(y.shape[0]): | |
y_i = y[i].masked_select(masks[i]) | |
y_pred_i = indices[i].masked_select(masks[i]) | |
correct[i]=torch.eq(y_pred_i, y_i).sum() | |
acc = correct.float()/count.float() | |
return acc.view(-1,1) | |
def binary_image_acc(y_pred,y): | |
B,H,W = y.shape | |
count = H*W | |
correct = torch.eq(y_pred.float(),y.float()).sum([1,2]) | |
acc = correct.float()/count | |
return acc.view(-1,1) | |
def compute(self): | |
if self._num_examples == 0: | |
raise NotComputableError('Accuracy must have at least one example before it can be computed.') | |
return self._num_correct / self._num_examples | |