import numpy as np import pickle import scipy.io as sio from config import data_path from tqdm.auto import tqdm # load data data = sio.loadmat(data_path, squeeze_me=True, struct_as_record=False)['data'] data_dict = {d.name:d for d in data} names_train = open('./data/train.txt').read().split('\n') n_train = len(names_train) trainTF = pickle.load(open('./data/trainTF.pkl','rb')) data_converted = [] for i in tqdm(range(n_train)): d = data_dict[names_train[i]] d_converted = {} d_converted['name'] = d.name d_converted['boundary'] = d.boundary d_converted['box'] = np.concatenate([d.gtBoxNew,d.rType[:,None]],axis=-1) d_converted['order'] = d.order d_converted['edge'] = d.rEdge d_converted['rBoundary'] = d.rBoundary data_converted.append(d_converted) sio.savemat('./data/data_train_converted.mat',{'data':data_converted,'nameList':names_train,'trainTF':trainTF}) data = sio.loadmat('./data/data_train_converted.mat', squeeze_me=True, struct_as_record=False) pickle.dump(data,open('./data/data_train_converted.pkl','wb'))