#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ignite.exceptions import NotComputableError from ignite.metrics.accumulation import VariableAccumulation def intersection(bbox_pred, bbox_gt): max_xy = torch.min(bbox_pred[:, 2:], bbox_gt[:, 2:]) min_xy = torch.max(bbox_pred[:, :2], bbox_gt[:, :2]) inter = torch.clamp((max_xy - min_xy), min=0) return inter[:, 0] * inter[:, 1] def jaccard(bbox_pred, bbox_gt): inter = intersection(bbox_pred, bbox_gt) area_pred = (bbox_pred[:, 2] - bbox_pred[:, 0]) * (bbox_pred[:, 3] - bbox_pred[:, 1]) area_gt = (bbox_gt[:, 2] - bbox_gt[:, 0]) * (bbox_gt[:, 3] - bbox_gt[:, 1]) union = area_pred + area_gt - inter iou = torch.div(inter, union) return torch.sum(iou), (iou > 0.5).sum().item(), (iou > 0.3).sum().item() def iou(bbox_pred, bbox_gt): inter = intersection(bbox_pred, bbox_gt) area_pred = (bbox_pred[:, 2] - bbox_pred[:, 0]) * (bbox_pred[:, 3] - bbox_pred[:, 1]) area_gt = (bbox_gt[:, 2] - bbox_gt[:, 0]) * (bbox_gt[:, 3] - bbox_gt[:, 1]) union = area_pred + area_gt - inter iou = torch.div(inter, union).view(-1,1) return iou class MetricAverage(VariableAccumulation): def __init__(self, output_transform=lambda x: x): def _mean_op(a, x): return a+(x.sum().item()) super(MetricAverage, self).__init__(op=_mean_op, output_transform=output_transform) def compute(self): if self.num_examples < 1: raise NotComputableError("{} must have at least one example before" " it can be computed.".format(self.__class__.__name__)) return self.accumulator / self.num_examples def image_acc(y_pred,y): B,H,W = y.shape indices = y_pred if y_pred.dim() == y.dim()+1: indices = torch.argmax(y_pred.softmax(1), dim=1) count = H*W correct = torch.eq(indices.float(),y.float()).sum([1,2]) acc = correct.float()/count return acc.view(-1,1) def image_acc_ignore(y_pred,y,ignore_index): B,H,W = y.shape indices = y_pred if y_pred.dim() == y.dim()+1: indices = torch.argmax(y_pred.softmax(1), dim=1) masks = y.ne(ignore_index) count = masks.sum([1,2]) correct = torch.zeros(B).to(count) for i in range(y.shape[0]): y_i = y[i].masked_select(masks[i]) y_pred_i = indices[i].masked_select(masks[i]) correct[i]=torch.eq(y_pred_i, y_i).sum() acc = correct.float()/count.float() return acc.view(-1,1) def binary_image_acc(y_pred,y): B,H,W = y.shape count = H*W correct = torch.eq(y_pred.float(),y.float()).sum([1,2]) acc = correct.float()/count return acc.view(-1,1) def compute(self): if self._num_examples == 0: raise NotComputableError('Accuracy must have at least one example before it can be computed.') return self._num_correct / self._num_examples