import random import pickle import scipy.io as sio import numpy as np import matplotlib.pyplot as plt from app import App from g2p.plot import plot_fp model_path = '../Interface/model/model.pth' device='cuda' train_path='../Interface/static/Data/data_train_converted.pkl' tf_path='../Interface/retrieval/tf_train.npy' centroid_path='../Interface/retrieval/centroids_train.npy' cluster_path='../Interface/retrieval/clusters_train.npy' dataset_path = '../Interface/static/Data/data_test_converted.pkl' app = App(model_path,device,train_path,tf_path,centroid_path,cluster_path) dataset = pickle.load(open(dataset_path,'rb'))['data'] # retrieve-> transfer -> predict -> align -> decorate data_boundary = dataset[0] data_graph = app.retrieve(data_boundary)[0] data = app.transfer(data_boundary,data_graph) data = app.forward(data,network_data=False) data = app.align(data) data = app.decorate(data) # or just: # data = app.generate(data_boundary) # visualize and save ax = plot_fp(data.boundary,data.newBox[data.order],data.rType[data.order],data.doors,data.windows) fig = plt.gcf() fig.canvas.draw() fig.canvas.print_figure('test_interface_data.png')