Spaces:
Running
Running
import cv2 | |
import numpy as np | |
def sobel_edge_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5) | |
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5) | |
magnitude = np.sqrt(sobelx**2 + sobely**2) | |
magnitude = np.uint8(magnitude) | |
return magnitude | |
def canny_edge_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
edges = cv2.Canny(gray, 50, 150, apertureSize=3) | |
return edges | |
def hough_lines(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
edges = cv2.Canny(gray, 50, 150) | |
lines = cv2.HoughLines(edges, 1, np.pi / 180, threshold=100) | |
result = image.copy() | |
for line in lines: | |
rho, theta = line[0] | |
a = np.cos(theta) | |
b = np.sin(theta) | |
x0 = a * rho | |
y0 = b * rho | |
x1 = int(x0 + 1000 * (-b)) | |
y1 = int(y0 + 1000 * (a)) | |
x2 = int(x0 - 1000 * (-b)) | |
y2 = int(y0 - 1000 * (a)) | |
cv2.line(result, (x1, y1), (x2, y2), (0, 0, 255), 2) | |
return result | |
def laplacian_edge_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
laplacian = cv2.Laplacian(gray, cv2.CV_64F) | |
laplacian = np.uint8(np.absolute(laplacian)) | |
return laplacian | |
def contours_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
result = np.zeros_like(image) | |
cv2.drawContours(result, contours, -1, (0, 255, 0), 2) | |
return result | |
def prewitt_edge_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
prewittx = cv2.filter2D(gray, cv2.CV_64F, np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])) | |
prewitty = cv2.filter2D(gray, cv2.CV_64F, np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])) | |
magnitude = np.sqrt(prewittx**2 + prewitty**2) | |
magnitude = np.uint8(magnitude) | |
return magnitude | |
def gradient_magnitude(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5) | |
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5) | |
magnitude = np.sqrt(sobelx**2 + sobely**2) | |
magnitude = np.uint8(magnitude) | |
return magnitude | |
def corner_detection(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10) | |
result = np.zeros_like(image) | |
corners = np.int0(corners) | |
for i in corners: | |
x, y = i.ravel() | |
cv2.circle(result, (x, y), 3, 255, -1) | |
return result | |