AIIA_docker / app.py
mat27's picture
Update app.py
5da7bf9
raw
history blame
929 Bytes
from fastapi import FastAPI
from transformers import pipeline
import os
os.environ['TRANSFORMERS_CACHE'] = '/blabla/cache/'
# Create a new FastAPI app instance
app = FastAPI()
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
pipe = pipeline("text2text-generation", model="mat27/medmnistPrueba")
# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
# containing the generated text under the key "output"
@app.get("/generate")
def generate(text: str):
# Use the pipeline to generate text from the given input text
output = pipe(text)
# Return the generated text in a JSON response
return {"output": output[0]["generated_text"]}