mat27 commited on
Commit
f24acd7
·
1 Parent(s): 4073f79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -67
app.py CHANGED
@@ -2,77 +2,13 @@ import numpy as np
2
  import matplotlib.pyplot as plt
3
  import time
4
 
 
5
  from tensorflow import keras
6
  from tensorflow.keras import layers
7
  app = FastAPI()
8
 
9
-
10
- # Model / data parameters
11
- num_classes = 9
12
- input_shape = (28, 28, 3)
13
- batch_size = 1000
14
- epochs = 1
15
-
16
- # Define baseline model
17
- def baseline_model():
18
-
19
- # Create model
20
- model = keras.Sequential(
21
- [
22
- keras.Input(shape=input_shape),
23
- layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
24
- layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
25
- layers.Flatten(),
26
- layers.Dropout(0.5),
27
- layers.Dense(num_classes, activation="softmax"),
28
- ]
29
- )
30
- model.summary()
31
-
32
- # Compile model
33
- model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
34
-
35
- return model
36
-
37
- # Load Data
38
- path = './pathmnist.npz'
39
- with np.load(path) as data:
40
- x_train = data['train_images']
41
- y_train = data['train_labels']
42
- x_test = data['test_images']
43
- y_test = data['test_labels']
44
- x_val = data['val_images']
45
- y_val = data['val_labels']
46
-
47
- # Show DataSet Images
48
- for image in x_train:
49
- plt.imshow(image)
50
- plt.show()
51
- break
52
-
53
- # Normalize images to the [0, 1] range
54
- x_train = x_train.astype("float32") / 255
55
- x_test = x_test.astype("float32") / 255
56
- x_val = x_val.astype("float32") / 255
57
-
58
- print("x_train shape:", x_train.shape)
59
- print(x_train.shape[0], "train samples")
60
- print(x_test.shape[0], "test samples")
61
- print(x_val.shape[0], "test samples")
62
-
63
- # Convert class vectors to binary class matrices
64
- y_train = keras.utils.to_categorical(y_train, num_classes)
65
- y_test = keras.utils.to_categorical(y_test, num_classes)
66
- y_val = keras.utils.to_categorical(y_val, num_classes)
67
-
68
- model = baseline_model()
69
-
70
- # Fit model
71
- #history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
72
- inicio = time.time()
73
- history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val))
74
- fin = time.time()
75
- print(fin-inicio)
76
 
77
  @app.get("/generate")
78
  def generate(x: np.array):
 
2
  import matplotlib.pyplot as plt
3
  import time
4
 
5
+ from huggingface_hub import from_pretrained_keras
6
  from tensorflow import keras
7
  from tensorflow.keras import layers
8
  app = FastAPI()
9
 
10
+ model = from_pretrained_keras("mat27/medmnsitPrueba")
11
+ model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  @app.get("/generate")
14
  def generate(x: np.array):