Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.responses import HTMLResponse | |
from transformers import pipeline | |
from PIL import Image | |
import io | |
app = FastAPI() | |
# Load the image classification pipeline | |
pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05") | |
async def test_endpoint(message: dict): | |
if "text" not in message: | |
raise HTTPException(status_code=400, detail="Missing 'text' in request body") | |
response = {"message": f"Received your message: {message['text']}"} | |
return response | |
async def classify_image(file: UploadFile = File(...)): | |
try: | |
# Read the file contents into a PIL image | |
image = Image.open(file.file).convert('RGB') | |
# Perform image classification | |
result = pipe(image) | |
# Overall result summary | |
overall_result = str(result) | |
# Add overall result as comment to the top result | |
result_with_comment = { | |
"label": result[0]['label'], | |
"score": result[0]['score'], | |
} | |
return {"classification_result": result_with_comment, "overall_result": overall_result} # Return the top prediction with comment and overall summary | |
except Exception as e: | |
# Handle exceptions, for example: file not found, image format issues, etc. | |
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}") | |
async def home(): | |
html_content = """ | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Image Classification</title> | |
<style> | |
body { | |
font-family: Arial, sans-serif; | |
background-color: #f0f0f0; | |
margin: 0; | |
padding: 0; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
height: 100vh; | |
flex-direction: column; | |
} | |
h1 { | |
color: #333; | |
} | |
form { | |
margin: 20px 0; | |
padding: 20px; | |
background: #fff; | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); | |
border-radius: 8px; | |
} | |
input[type="file"] { | |
margin-bottom: 10px; | |
} | |
button { | |
background-color: #4CAF50; | |
color: white; | |
border: none; | |
padding: 10px 20px; | |
text-align: center; | |
text-decoration: none; | |
display: inline-block; | |
font-size: 16px; | |
border-radius: 5px; | |
cursor: pointer; | |
} | |
button:hover { | |
background-color: #45a049; | |
} | |
#result, #overall-results { | |
margin-top: 20px; | |
padding: 20px; | |
background: #fff; | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); | |
border-radius: 8px; | |
max-width: 500px; | |
word-wrap: break-word; | |
} | |
</style> | |
</head> | |
<body> | |
<h1>Upload an Image for Classification</h1> | |
<form id="upload-form" enctype="multipart/form-data"> | |
<input type="file" id="file" name="file" accept="image/*" required /> | |
<button type="submit">Upload</button> | |
</form> | |
<div id="result"></div> | |
<div id="overall-results"></div> | |
<script> | |
const form = document.getElementById('upload-form'); | |
form.addEventListener('submit', async (e) => { | |
e.preventDefault(); | |
const fileInput = document.getElementById('file'); | |
const formData = new FormData(); | |
formData.append('file', fileInput.files[0]); | |
const response = await fetch('/classify/', { | |
method: 'POST', | |
body: formData | |
}); | |
const result = await response.json(); | |
const resultDiv = document.getElementById('result'); | |
const overallResultsDiv = document.getElementById('overall-results'); | |
if (response.ok) { | |
resultDiv.innerHTML = `<h2>Top Classification Result:</h2><p>${JSON.stringify(result.classification_result)}</p>`; | |
overallResultsDiv.innerHTML = `<h2>All Results:</h2><p>${result.overall_result}</p>`; | |
} else { | |
resultDiv.innerHTML = `<h2>Error:</h2><p>${result.detail}</p>`; | |
overallResultsDiv.innerHTML = ''; | |
} | |
}); | |
</script> | |
</body> | |
</html> | |
""" | |
return HTMLResponse(content=html_content) | |
# Sample usage: | |
# 1. Start the FastAPI server | |
# 2. Open the browser and navigate to the root URL to upload an image and see the classification result | |