mateoluksenberg commited on
Commit
7b48e6a
·
verified ·
1 Parent(s): 5420729

Upload 4 files

Browse files
Files changed (4) hide show
  1. Dockerfile +30 -0
  2. app.py +43 -0
  3. cm5.jpg +0 -0
  4. requirements.txt +0 -0
Dockerfile ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Use the official Python 3.9 image
2
+ FROM python:3.10
3
+
4
+ ## set the working directory to /code
5
+ WORKDIR /code
6
+
7
+ ## Copy the current directory contents in the container at /code
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ ## Install the requirements.txt
11
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
+
13
+ # Set up a new user named "user"
14
+ RUN useradd user
15
+ # Switch to the "user" user
16
+ USER user
17
+
18
+ # Set home to the user's home directory
19
+
20
+ ENV HOME=/home/user \
21
+ PATH=/home/user/.local/bin:$PATH
22
+
23
+ # Set the working directory to the user's home directory
24
+ WORKDIR $HOME/app
25
+
26
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
27
+ COPY --chown=user . $HOME/app
28
+
29
+ ## Start the FASTAPI App on port 7860
30
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+ import io
5
+
6
+ app = FastAPI()
7
+
8
+ # Load the image classification pipeline
9
+ pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05")
10
+
11
+ # Sample image path (for testing)
12
+ image_path = 'cm5.jpg'
13
+
14
+ # Async function to classify an image
15
+ async def classify_image(image_path: str):
16
+ try:
17
+ image = Image.open(image_path).convert('RGB')
18
+
19
+ image_bytes = io.BytesIO()
20
+ image.save(image_bytes, format='JPEG')
21
+ image_bytes = image_bytes.getvalue()
22
+
23
+ # Perform image classification
24
+ result = pipe(image_bytes)
25
+
26
+ return result[0] # Return the top prediction
27
+
28
+ except Exception as e:
29
+ # Handle exceptions, for example: file not found, image format issues, etc.
30
+ raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
31
+
32
+ @app.get("/")
33
+ async def home(image_path: str = image_path):
34
+ try:
35
+ result = await classify_image(image_path)
36
+ return {"message": "Hello World", "classification_result": result}
37
+
38
+ except HTTPException as e:
39
+ raise e
40
+
41
+ except Exception as e:
42
+ raise HTTPException(status_code=500, detail=f"Error classifying image: {str(e)}")
43
+
cm5.jpg ADDED
requirements.txt ADDED
File without changes