File size: 9,934 Bytes
afc04de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List

import fitz  # PyMuPDF
import docx
from pptx import Presentation

MODEL_LIST = ["nikravan/glm-4vq"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = MODEL_LIST[0]
MODEL_NAME = "GLM-4vq"

TITLE = "<h1>AI CHAT DOCS</h1>"

DESCRIPTION = f"""
<center>
<p> 
<br>
USANDO MODELO: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
</center>"""

CSS = """
h1 {
    text-align: center;
    display: block;
}
"""

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

def extract_text(path):
    return open(path, 'r').read()

def extract_pdf(path):
    doc = fitz.open(path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text

def extract_docx(path):
    doc = docx.Document(path)
    data = []
    for paragraph in doc.paragraphs:
        data.append(paragraph.text)
    content = '\n\n'.join(data)
    return content

def extract_pptx(path):
    prs = Presentation(path)
    text = ""
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text

def mode_load(path):
    choice = ""
    file_type = path.split(".")[-1]
    print(file_type)
    if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
        if file_type.endswith("pdf"):
            content = extract_pdf(path)
        elif file_type.endswith("docx"):
            content = extract_docx(path)
        elif file_type.endswith("pptx"):
            content = extract_pptx(path)
        else:
            content = extract_text(path)
        choice = "doc"
        print(content[:100])
        return choice, content[:5000]

    elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
        content = Image.open(path).convert('RGB')
        choice = "image"
        return choice, content

    else:
        raise gr.Error("Oops, unsupported files.")

@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        trust_remote_code=True
    )
        
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    prompt_files = []
    if message["files"]:
        choice, contents = mode_load(message["files"][-1])
        if choice == "image":
            conversation.append({"role": "user", "image": contents, "content": message['text']})
        elif choice == "doc":
            format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
            conversation.append({"role": "user", "content": format_msg})
    else:
        if len(history) == 0:
            contents = None
            conversation.append({"role": "user", "content": message['text']})
        else:
            for prompt, answer in history:
                if answer is None:
                    prompt_files.append(prompt[0])
                    conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
                else:
                    conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
            if len(prompt_files) > 0:
                choice, contents = mode_load(prompt_files[-1])
            else:
                choice = ""
                conversation.append({"role": "user", "image": "", "content": message['text']})

            if choice == "image":
                conversation.append({"role": "user", "image": contents, "content": message['text']})
            elif choice == "doc":
                format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
                conversation.append({"role": "user", "content": format_msg})
    print(f"Conversation is -\n{conversation}")

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
                                              return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=max_length,
        streamer=streamer,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[151329, 151336, 151338],
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer

chatbot = gr.Chatbot()
chat_input = gr.MultimodalTextbox(
    interactive=True,
    placeholder="Enter message or upload a file ...",
    show_label=False,
)

EXAMPLES = [
    [{"text": "Resumir Documento"}],
    [{"text": "Explicar la Imagen"}],
    [{"text": "¿De qué es la foto?", "files": ["perro.jpg"]}],
    [{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
]

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class ChatMessage(BaseModel):
    text: str
    history: Optional[List] = []
    temperature: float = 0.8
    max_length: int = 4096
    top_p: float = 1.0
    top_k: int = 10
    penalty: float = 1.0


@app.post("/test/")
async def test_endpoint(message: dict):
    if "text" not in message:
        raise HTTPException(status_code=400, detail="Missing 'text' in request body")
    
    response = {"message": f"Received your message: {message['text']}"}
    return response

@app.post("/chat/")
async def chat_endpoint(message: ChatMessage, file: Optional[UploadFile] = None):
    conversation = []
    if file:
        path = f"/tmp/{file.filename}"
        with open(path, "wb") as f:
            f.write(await file.read())
        choice, contents = mode_load(path)
        if choice == "image":
            conversation.append({"role": "user", "image": contents, "content": message.text})
        elif choice == "doc":
            format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message.text
            conversation.append({"role": "user", "content": format_msg})
    else:
        conversation.append({"role": "user", "content": message.text})

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
                                              return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=message.max_length,
        streamer=streamer,
        do_sample=True,
        top_p=message.top_p,
        top_k=message.top_k,
        temperature=message.temperature,
        repetition_penalty=message.penalty,
        eos_token_id=[151329, 151336, 151338],
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            return {"response": buffer}

with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=1024,
                maximum=8192,
                step=1,
                value=4096,
                label="Max Length",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=10,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
    ),
    gr.Examples(EXAMPLES, [chat_input])

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)