Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,53 @@ async def test_endpoint(message: dict):
|
|
27 |
return response
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
31 |
|
32 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
27 |
return response
|
28 |
|
29 |
|
30 |
+
@app.post("/chat/")
|
31 |
+
async def chat_endpoint(message: dict):
|
32 |
+
if "text" not in message:
|
33 |
+
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
34 |
+
|
35 |
+
chat_message = message["text"]
|
36 |
+
response_text = generate_chat_response(chat_message)
|
37 |
+
|
38 |
+
return {"response": response_text}
|
39 |
+
|
40 |
+
def generate_chat_response(text: str):
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
MODEL_ID,
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
trust_remote_code=True
|
46 |
+
)
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
49 |
+
|
50 |
+
conversation = [{"role": "user", "content": text}]
|
51 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
52 |
+
return_tensors="pt", return_dict=True).to(model.device)
|
53 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
54 |
+
|
55 |
+
generate_kwargs = dict(
|
56 |
+
max_length=4096,
|
57 |
+
streamer=streamer,
|
58 |
+
do_sample=True,
|
59 |
+
top_p=0.9,
|
60 |
+
top_k=50,
|
61 |
+
temperature=0.7,
|
62 |
+
repetition_penalty=1.0,
|
63 |
+
eos_token_id=[151329, 151336, 151338],
|
64 |
+
)
|
65 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
69 |
+
thread.start()
|
70 |
+
buffer = ""
|
71 |
+
for new_text in streamer:
|
72 |
+
buffer += new_text
|
73 |
+
|
74 |
+
return buffer
|
75 |
+
|
76 |
+
|
77 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
78 |
|
79 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|