File size: 7,584 Bytes
253d7e3
 
 
1a6d322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253d7e3
 
1a6d322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253d7e3
1a6d322
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
from huggingface_hub import InferenceClient

import time
import random
import requests
from bs4 import BeautifulSoup
from qdrant_client import QdrantClient
# from qdrant_client.http.models import VectorParams
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
# from transformers import pipeline
from google.colab import userdata

from langchain import PromptTemplate
from langchain_groq import ChatGroq
# from langchain_community.llms import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import PyPDFLoader
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import PyPDF2
import os

qdrant_url = userdata.get('QDRANT_URL')
qdrant_api_key = userdata.get('QDRANT_API-KEY')
groq_api_key = userdata.get('GROQ_API_KEY')

# Function to extract text from PDFs
def extract_text_from_pdf(pdf_path):
    pdf_text = ""
    with open(pdf_path, "rb") as pdf_file:
        reader = PyPDF2.PdfReader(pdf_file)
        for page_num in range(len(reader.pages)):
            pdf_text += reader.pages[page_num].extract_text()
    return pdf_text

# Function to load and extract text from different document types
def load_documents_from_directory(directory_path):
    documents = []

    # Iterate over files in the directory
    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)

        # Handling text files (.txt)
        if filename.endswith(".txt"):
            with open(file_path, "r") as file:
                content = file.read()
                doc = Document(page_content=content, metadata={"filename": filename})
                documents.append(doc)

        # Handling PDF files (.pdf)
        elif filename.endswith(".pdf"):
            pdf_text = extract_text_from_pdf(file_path)
            doc = Document(page_content=pdf_text, metadata={"filename": filename})
            documents.append(doc)

    return documents

# Step 1: Load documents from a directory (handling both .txt and .pdf)
directory_path = "/content/drive/Othercomputers/My Laptop/Training/Atomcamp/DS6_Bootcamp/Projects/FYP/Rules_and_Policies"
documents = load_documents_from_directory(directory_path)

# Step 2: Split the documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=250)
split_docs = text_splitter.split_documents(documents)

# Step 3: Embed the document chunks using HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

# # Step 3: Connect to Qdrant
# ##########################################
# # Run once!
# ##########################################
qdrant = Qdrant.from_documents(
    split_docs,
    embedding = embeddings,
    url = qdrant_url,
    prefer_grpc = True,
    api_key = qdrant_api_key,
    collection_name = "university-rules-chatbot"
)

def format_docs(docs):
    formatted_docs = []
    for doc in docs:
        # Format the metadata into a string
        metadata_str = ', '.join(f"{key}: {value}" for key, value in doc.metadata.items())

        # Combine page content with its metadata
        doc_str = f"{doc.page_content}\nMetadata: {metadata_str}"

        # Append to the list of formatted documents
        formatted_docs.append(doc_str)

        # print(f"Formatted Document {len(formatted_docs)}:\n{doc_str}\n{formatted_docs}\n")  # my addition

    # Join all formatted documents with double newlines
    return "\n\n".join(formatted_docs)

def retrieve_answer(question: str, bot: str):
    """
    Retrieve the answer to a question from the documents.

    Args:
        question (str): The question to answer.

    Returns:
        str: The generated answer.
    """

    prompt = PromptTemplate(
        template = """
            # Your role
            You are a brilliant expert at understanding the intent of the questioner and the crux of the question, and providing the most optimal answer
            from the scraped content to the questioner's needs from the text you are given.


            # Instructions
            Your task is to answer the question using the following pieces of retrieved context delimited by XML tags.

            <retrieved context>
            Retrieved Context:
            {context}
            </retrieved context>


            # Constraint
            1. Think deeply and multiple times about the user's question\nUser's question:\n{question}\nYou must understand the intent of their question
            and provide the most appropriate answer.
            - Ask yourself why to understand the context of the question and why the questioner asked it, reflect on it, and provide an appropriate
            response based on what you understand.
            2. Choose the most relevant content(the key content that directly relates to the question) from the retrieved context and use it to generate an answer.
            3. Generate a concise, logical answer. When generating the answer, Do Not just list your selections, But rearrange them in context
            so that they become paragraphs with a natural flow.
            4. When you don't have retrieved context for the question or If you have a retrieved documents, but their content is irrelevant to the question,
            you should answer 'I can't find the answer to that question in the material I have'.
            5. Use five sentences maximum. Keep the answer concise but logical/natural/in-depth.
            6. At the end of the response provide metadata provided in the relevant docs,
            For example:"Metadata: page: 19, source: /content/OCR_RSCA/Analyse docs JVB + mails et convention FOOT INNOVATION.pdf'. Return Just the page and source

            Question: {question}
            Helpful Answer, formated in markdown:""",

        input_variables = ["context","question"]
    )

    embeddings_model = HuggingFaceEmbeddings(model_name = "all-MiniLM-L6-v2")

    qdrant_client = QdrantClient(url=qdrant_url, api_key=qdrant_api_key)

    qdrant = Qdrant(
        client=qdrant_client,
        collection_name="university-rules-chatbot",
        embeddings=embeddings_model
        )

    retriever = qdrant.as_retriever(search_kwargs={"k": 20})

    # docs = retriever.get_relevant_documents(query)
    # for doc in docs:
    #   print(f"Retrieved document:", doc.page_content)
    #   print('*' * 60)

    # llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0,openai_api_key=openai_api_key)

    groq_llm = ChatGroq(
        model="llama-3.1-70b-versatile",  # llma-3.1-70b-versatile
        temperature=0,
        groq_api_key=groq_api_key,
        max_retries=2,
    )

    rag_chain = (
        {"context":  retriever| format_docs, "question": RunnablePassthrough()}
        | prompt
        | groq_llm
        | StrOutputParser()
    )

    answer = rag_chain.invoke(question)

    return answer

# Create an empty list to store chatbot messages
messages = []

# Add initial instructions or welcome message
messages.append(("Hello! How can I help you today?", "KIU-bot"))

# Create Gradio chatbot with the messages list
chatbot = gr.Chatbot(value=messages)

# Create Gradio interface
gr.ChatInterface(
    fn=retrieve_answer,
    chatbot=chatbot,
    title="university-rules-chatbot",
    description="Ask any question related to Karakoram International University Gilgit-Baltistan.",
    examples=[["What courses does KIU offer?"]]
).launch(debug=True)