File size: 3,505 Bytes
d54044f
c030f81
 
 
 
 
 
 
 
a1a07b5
c030f81
 
a1a07b5
 
c030f81
a1a07b5
 
 
c030f81
507cfea
03a963c
507cfea
c030f81
 
 
507cfea
c030f81
 
 
 
 
03a963c
c030f81
 
e04a518
c030f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04a518
c030f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b333741
 
 
 
 
 
e87eb12
 
 
 
 
 
 
ac8c397
e87eb12
ac8c397
2baab67
ac8c397
c030f81
b696bcd
ac8c397
c030f81
adc96ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#from transformers import AutoModelForCausalLM, AutoTokenizer

from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate

import gradio as gr

#REPO_ID = "Xenova/gpt-3.5-turbo"

# Load the model and tokenizer from Hugging Face's model hub
#model = AutoModelForCausalLM.from_pretrained(REPO_ID)
#tokenizer = AutoTokenizer.from_pretrained(REPO_ID)

#llm = ChatOpenAI(model=model, tokenizer=tokenizer)

llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key="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")

# Initialize global variable for conversation memory
buffer_memory = ConversationBufferWindowMemory(k=3)
#buffer_memory = ConversationBufferWindowMemory(k=3)

conversation = ConversationChain(
    llm=llm,
    memory=buffer_memory,
    verbose=True
)

context = """ 
You act as a chatbot to interact with users on their questions about traditional chinese medicine (TCM). \
Welcome the user in a friendly way.  \
You respond in a short, very friendly style. \
For each text, mark NER tags. \
Tag categories: location, product. \
Text: I want to visit a clinic in [Ang Mo Kio](location). \
If a user says he/she wants to visit a traditional chinese medicine (TCM) clinic, \
ask for which location he/she wants to visit. \
After user replies with location, show in chat window the Google Map from this link \
https://www.google.com/maps/search/tcm+clinics+at+location+name \
For example, if a user wants to visit a clinic in Ang Mo Kio, \
show in chat window the Google Map from this link \
https://www.google.com/maps/search/tcm+clinics+at+ang+mo+kio \
Examoples of location names:
North:
Sembawang
Woodlands
Yishun
North-East:
Ang Mo Kio
Hougang
Punggol
Sengkang
Serangoon
East:
Bedok
Pasir Ris
Tampines
West:
Bukit Batok
Bukit Panjang
Choa Chu Kang
Clementi
Jurong East
Jurong West
Tengah
Central:
Bishan
Bukit Merah
Bukit Timah
Central Area
Geylang
Kallang
Whampoa
Marine Parade
Queenstown
Toa Payoh
For each text, mark NER tags. \
Tag categories: location, product. \
Text: I want to buy/get [Po Chai Pills](product). \
If a user wants to buy/get a product, suggest that \
he/she can consider buying/getting from https://www.amazon.sg/s?k=product+name \
For example, if a user wants to buy Po Chai Pills, suggest \
he/she can consider buying/getting from https://www.amazon.sg/s?k=po+chai+pills \
Examples of product names:
Ointment/Hong You/Feng You/Fengyou
Liquorice/Gan cao/Gancao
Chrysanthemum/Ju hua/Juhua
Goji berry/wolfberry/Gou Qi Zi/Gouqizi
Red dates/Jujubes/Hong Zao/Hongzao
"""

prompt_template = PromptTemplate.from_template('''system role :{context} \
        user:{query}\
        assistance: 
        ''')

# Define Gradio Interface
# iface = gr.Interface(
#     fn=lambda query: conversation.run(prompt_template.format(context=context, query=query)),
#     inputs=gr.Textbox(),
#     outputs=gr.Textbox(),
#     live=True,
# )

# Create a function to handle the Gradio Interface
def chat_interface(query, chat_history=[]):
    response, chat_history = conversation.run(prompt_template.format(context=context, query=query), chat_history)
    return response, chat_history + [query]

# Create the Gradio Interface
iface = gr.Interface(
    fn=chat_interface,
    inputs=gr.Textbox(),
    outputs=gr.Textbox(),
)

# Launch Gradio Interface
iface.launch()

# gr.load("models/ksh-nyp/llama-2-7b-chat-TCMKB").launch()