Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
def inference(repo_id, model_name, img): | |
#model_path = hf_hub_download(repo_id=repo_id, filename=model_name) | |
model_path = 'trained_models/cFOS_in_HC/cFOS_in_HC_ensemble_1.pt' | |
model = torch.jit.load(model_path, map_location='cpu') | |
n_channels = len(model.norm.mean) | |
# Remove redundant channels | |
img = img[...,:n_channels] | |
inp = torch.from_numpy(img).float() | |
argmax, softmax, stdeviation = model(inp) | |
return argmax*255, stdeviation | |
title="deepflash2" | |
description='deepflash2 is a deep-learning pipeline for the segmentation of ambiguous microscopic images.\n deepflash2 uses deep model ensembles to achieve more accurate and reliable results. Thus, inference time will be more than a minute in this space.' | |
examples=[['matjesg/deepflash2_demo', 'cFOS_in_HC_ensemble.pt', 'cFOS_example.png'], | |
['matjesg/deepflash2_demo', 'YFP_in_CTX_ensemble.pt', 'YFP_example.png'] | |
] | |
gr.Interface(inference, | |
[gr.inputs.Textbox(placeholder='e.g., matjesg/cFOS_in_HC', label='repo_id'), | |
gr.inputs.Textbox(placeholder='e.g., ensemble.onnx', label='model_name'), | |
gr.inputs.Image(type='numpy', label='Input image') | |
], | |
[gr.outputs.Image(label='Segmentation Mask'), | |
gr.outputs.Image(label='Uncertainty Map')], | |
title=title, | |
description=description, | |
examples=examples, | |
).launch() |