matrixportal commited on
Commit
5af094f
·
verified ·
1 Parent(s): f4971c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -5
app.py CHANGED
@@ -240,11 +240,6 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
240
  ## ✅ Quantized Models Download List
241
 
242
  ### 🔍 Recommended Quantizations
243
- - **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) (Best balance of speed/quality)
244
- - **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) (Optimized for ARM CPUs)
245
- - **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) (Near-original quality)
246
-
247
- ### 📦 Full Quantization Options
248
  | 🚀 Download | 🔢 Type | 📝 Notes |
249
  |:---------|:-----|:------|
250
  | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization |
@@ -262,6 +257,132 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
262
  | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy |
263
 
264
  💡 **Tip:** Use `F16` for maximum precision when quality is critical
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
  """
266
 
267
  # README'yi güncelle (ModelCard kullanarak)
 
240
  ## ✅ Quantized Models Download List
241
 
242
  ### 🔍 Recommended Quantizations
 
 
 
 
 
243
  | 🚀 Download | 🔢 Type | 📝 Notes |
244
  |:---------|:-----|:------|
245
  | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization |
 
257
  | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy |
258
 
259
  💡 **Tip:** Use `F16` for maximum precision when quality is critical
260
+
261
+ # GGUF Model Quantization & Usage Guide with llama.cpp
262
+
263
+ ## What is GGUF and Quantization?
264
+
265
+ **GGUF** (GPT-Generated Unified Format) is an efficient model file format developed by the `llama.cpp` team that:
266
+ - Supports multiple quantization levels
267
+ - Works cross-platform
268
+ - Enables fast loading and inference
269
+
270
+ **Quantization** converts model weights to lower precision data types (e.g., 4-bit integers instead of 32-bit floats) to:
271
+ - Reduce model size
272
+ - Decrease memory usage
273
+ - Speed up inference
274
+ - (With minor accuracy trade-offs)
275
+
276
+ ## Step-by-Step Guide
277
+
278
+ ### 1. Prerequisites
279
+
280
+ ```bash
281
+ # System updates
282
+ sudo apt update && sudo apt upgrade -y
283
+
284
+ # Dependencies
285
+ sudo apt install -y build-essential cmake python3-pip
286
+
287
+ # Clone and build llama.cpp
288
+ git clone https://github.com/ggerganov/llama.cpp
289
+ cd llama.cpp
290
+ make -j4
291
+ ```
292
+
293
+ ### 2. Using Quantized Models from Hugging Face
294
+
295
+ My automated quantization script produces models in this format:
296
+ ```
297
+ https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf
298
+ ```
299
+
300
+ Download your quantized model directly:
301
+
302
+ ```bash
303
+ wget https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf
304
+ ```
305
+
306
+ ### 3. Running the Quantized Model
307
+
308
+ Basic usage:
309
+ ```bash
310
+ ./main -m {model_name.lower()}-q4_k_m.gguf -p "Your prompt here" -n 128
311
+ ```
312
+
313
+ Example with a creative writing prompt:
314
+ ```bash
315
+ ./main -m {model_name.lower()}-q4_k_m.gguf \
316
+ -p "[INST] Write a short poem about AI quantization in the style of Shakespeare [/INST]" \
317
+ -n 256 -c 2048 -t 8 --temp 0.7
318
+ ```
319
+
320
+ Advanced parameters:
321
+ ```bash
322
+ ./main -m {model_name.lower()}-q4_k_m.gguf \
323
+ -p "Question: What is the GGUF format?\nAnswer:" \
324
+ -n 256 -c 2048 -t 8 --temp 0.7 --top-k 40 --top-p 0.9
325
+ ```
326
+
327
+ ### 4. Python Integration
328
+
329
+ Install the Python package:
330
+ ```bash
331
+ pip install llama-cpp-python
332
+ ```
333
+
334
+ Example script:
335
+ ```python
336
+ from llama_cpp import Llama
337
+
338
+ # Initialize the model
339
+ llm = Llama(
340
+ model_path="{model_name.lower()}-q4_k_m.gguf",
341
+ n_ctx=2048,
342
+ n_threads=8
343
+ )
344
+
345
+ # Run inference
346
+ response = llm(
347
+ "[INST] Explain GGUF quantization to a beginner [/INST]",
348
+ max_tokens=256,
349
+ temperature=0.7,
350
+ top_p=0.9
351
+ )
352
+
353
+ print(response["choices"][0]["text"])
354
+ ```
355
+
356
+ ## Performance Tips
357
+
358
+ 1. **Hardware Utilization**:
359
+ - Set thread count with `-t` (typically CPU core count)
360
+ - Compile with CUDA/OpenCL for GPU support
361
+
362
+ 2. **Memory Optimization**:
363
+ - Lower quantization (like q4_k_m) uses less RAM
364
+ - Adjust context size with `-c` parameter
365
+
366
+ 3. **Speed/Accuracy Balance**:
367
+ - Higher bit quantization is slower but more accurate
368
+ - Reduce randomness with `--temp 0` for consistent results
369
+
370
+ ## FAQ
371
+
372
+ **Q: What quantization levels are available?**
373
+ A: Common options include q4_0, q4_k_m, q5_0, q5_k_m, q8_0 (my script uses q4_k_m by default)
374
+
375
+ **Q: How much performance loss occurs with q4_k_m?**
376
+ A: Typically 2-5% accuracy reduction but 4x smaller size
377
+
378
+ **Q: How to enable GPU support?**
379
+ A: Build with `make LLAMA_CUBLAS=1` for NVIDIA GPUs
380
+
381
+ ## Useful Resources
382
+
383
+ 1. [llama.cpp GitHub](https://github.com/ggerganov/llama.cpp)
384
+ 2. [GGUF Format Specs](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md)
385
+ 3. [Hugging Face Model Hub](https://huggingface.co/models)
386
  """
387
 
388
  # README'yi güncelle (ModelCard kullanarak)