import os import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr import tempfile from huggingface_hub import HfApi, ModelCard, whoami from gradio_huggingfacehub_search import HuggingfaceHubSearch from pathlib import Path from textwrap import dedent from apscheduler.schedulers.background import BackgroundScheduler # used for restarting the space HF_TOKEN = os.environ.get("HF_TOKEN") CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" # escape HTML for logging def escape(s: str) -> str: s = s.replace("&", "&") # Must be done first! s = s.replace("<", "<") s = s.replace(">", ">") s = s.replace('"', """) s = s.replace("\n", "
") return s def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): imatrix_command = [ "./llama.cpp/llama-imatrix", "-m", model_path, "-f", train_data_path, "-ngl", "99", "--output-frequency", "10", "-o", output_path, ] if not os.path.isfile(model_path): raise Exception(f"Model file not found: {model_path}") print("Running imatrix command...") process = subprocess.Popen(imatrix_command, shell=False) try: process.wait(timeout=60) # added wait except subprocess.TimeoutExpired: print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") process.send_signal(signal.SIGINT) try: process.wait(timeout=5) # grace period except subprocess.TimeoutExpired: print("Imatrix proc still didn't term. Forecfully terming process...") process.kill() print("Importance matrix generation completed.") def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): print(f"Model path: {model_path}") print(f"Output dir: {outdir}") if oauth_token is None or oauth_token.token is None: raise ValueError("You have to be logged in.") split_cmd = [ "./llama.cpp/llama-gguf-split", "--split", ] if split_max_size: split_cmd.append("--split-max-size") split_cmd.append(split_max_size) else: split_cmd.append("--split-max-tensors") split_cmd.append(str(split_max_tensors)) # args for output model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension split_cmd.append(model_path) split_cmd.append(model_path_prefix) print(f"Split command: {split_cmd}") result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) print(f"Split command stdout: {result.stdout}") print(f"Split command stderr: {result.stderr}") if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error splitting the model: {stderr_str}") print("Model split successfully!") # remove the original model file if needed if os.path.exists(model_path): os.remove(model_path) model_file_prefix = model_path_prefix.split('/')[-1] print(f"Model file name prefix: {model_file_prefix}") sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] if sharded_model_files: print(f"Sharded model files: {sharded_model_files}") api = HfApi(token=oauth_token.token) for file in sharded_model_files: file_path = os.path.join(outdir, file) print(f"Uploading file: {file_path}") try: api.upload_file( path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id, ) except Exception as e: raise Exception(f"Error uploading file {file_path}: {e}") else: raise Exception("No sharded files found.") print("Sharded model has been uploaded successfully!") def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: raise gr.Error("You must be logged in to use all-gguf-same-where") # validate the oauth token try: whoami(oauth_token.token) except Exception as e: raise gr.Error("You must be logged in to use all-gguf-same-where") model_name = model_id.split('/')[-1] try: api = HfApi(token=oauth_token.token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = ( "*.safetensors" if any( file.path.endswith(".safetensors") for file in api.list_repo_tree( repo_id=model_id, recursive=True, ) ) else "*.bin" ) dl_pattern += [pattern] if not os.path.exists("downloads"): os.makedirs("downloads") if not os.path.exists("outputs"): os.makedirs("outputs") with tempfile.TemporaryDirectory(dir="outputs") as outdir: fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: # Keep the model name as the dirname so the model name metadata is populated correctly local_dir = Path(tmpdir)/model_name print(local_dir) api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) print("Model downloaded successfully!") print(f"Current working directory: {os.getcwd()}") print(f"Model directory contents: {os.listdir(local_dir)}") config_dir = local_dir/"config.json" adapter_config_dir = local_dir/"adapter_config.json" if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): raise Exception('adapter_config.json is present.

If you are converting a LoRA adapter to GGUF, please use GGUF-my-lora.') result = subprocess.run([ "python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16 ], shell=False, capture_output=True) print(result) if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error converting to fp16: {stderr_str}") print("Model converted to fp16 successfully!") print(f"Converted model path: {fp16}") imatrix_path = Path(outdir)/"imatrix.dat" if use_imatrix: if train_data_file: train_data_path = train_data_file.name else: train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset print(f"Training data file path: {train_data_path}") if not os.path.isfile(train_data_path): raise Exception(f"Training data file not found: {train_data_path}") generate_importance_matrix(fp16, train_data_path, imatrix_path) else: print("Not using imatrix quantization.") # Quantize the model quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf" quantized_gguf_path = str(Path(outdir)/quantized_gguf_name) if use_imatrix: quantise_ggml = [ "llama.cpp/build/bin/llama-quantize", "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method ] else: quantise_ggml = [ "./llama.cpp/llama-quantize", fp16, quantized_gguf_path, q_method ] result = subprocess.run(quantise_ggml, shell=False, capture_output=True) if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error quantizing: {stderr_str}") print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") print(f"Quantized model path: {quantized_gguf_path}") # Create empty repo username = whoami(oauth_token.token)["name"] new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-GGUF", exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repo created successfully!", new_repo_url) try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] card.data.tags.append("llama-cpp") card.data.tags.append("matrixportal") card.data.base_model = model_id def get_license_info(card): """Model kartından lisans bilgisini güvenle çeker""" if not hasattr(card, 'data'): return "Unknown" # Lisans bilgisini alma (license veya model_license alanlarından) license_info = getattr(card.data, 'license', getattr(card.data, 'model_license', 'Unknown')) # Dictionary formatı kontrolü if isinstance(license_info, dict): license_info = license_info.get('name', 'Unknown') return str(license_info).strip() or "Unknown" def get_license_info(card): """Model kartından lisans bilgisini güvenle çeker""" if not hasattr(card, 'data'): return "Unknown" # Lisans bilgisini alma (license veya model_license alanlarından) license_info = getattr(card.data, 'license', getattr(card.data, 'model_license', 'Unknown')) # Dictionary formatı kontrolü if isinstance(license_info, dict): license_info = license_info.get('name', 'Unknown') return str(license_info).strip() or "Unknown" def format_license_text(license_name): """Lisans adını linkli hale getirir""" license_name = str(license_name).lower().replace(' ', '-') license_links = { 'apache-2.0': '[Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)', 'mit': '[MIT](https://opensource.org/licenses/MIT)', 'llama3.2': '[Llama 3 Community License](https://llama.meta.com/llama3/license)', 'cc-by-nc-4.0': '[CC-BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/)', 'openrail': '[OpenRAIL](https://huggingface.co/spaces/CompVis/stable-diffusion-license)' } return license_links.get(license_name, license_name) # Lisans bilgisini al ve formatla license_info = get_license_info(card) formatted_license = format_license_text(license_info) card.text = dedent( f""" - **Base model:** [{model_id}](https://huggingface.co/{model_id}) - **License:** {formatted_license} Quantized with llama.cpp using [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) """ ) readme_path = Path(outdir)/"README.md" card.save(readme_path) # Quant listesi oluşturma quant_list = f""" ## ✅ Quantized Models Download List ### 🔍 Recommended Quantizations - **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) (Best balance of speed/quality) - **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) (Optimized for ARM CPUs) - **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) (Near-original quality) ### 📦 Full Quantization Options | 🚀 Download | 🔢 Type | 📝 Notes | |:---------|:-----|:------| | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_s.gguf) | ![Q3_K_S](https://img.shields.io/badge/Q3_K_S-34A853) | Small size | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_m.gguf) | ![Q3_K_M](https://img.shields.io/badge/Q3_K_M-FBBC05) | Balanced quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_l.gguf) | ![Q3_K_L](https://img.shields.io/badge/Q3_K_L-4285F4) | Better quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) | ![Q4_0](https://img.shields.io/badge/Q4_0-EA4335) | Fast on ARM | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_s.gguf) | ![Q4_K_S](https://img.shields.io/badge/Q4_K_S-673AB7) | Fast, recommended | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) | ![Q4_K_M](https://img.shields.io/badge/Q4_K_M-673AB7) ⭐ | Best balance | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_0.gguf) | ![Q5_0](https://img.shields.io/badge/Q5_0-FF6D01) | Good quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_s.gguf) | ![Q5_K_S](https://img.shields.io/badge/Q5_K_S-0F9D58) | Balanced | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_m.gguf) | ![Q5_K_M](https://img.shields.io/badge/Q5_K_M-0F9D58) | High quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q6_k.gguf) | ![Q6_K](https://img.shields.io/badge/Q6_K-4285F4) 🏆 | Very good quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) | ![Q8_0](https://img.shields.io/badge/Q8_0-EA4335) ⚡ | Fast, best quality | | [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy | 💡 **Tip:** Use `F16` for maximum precision when quality is critical --- # 🚀 Applications and Tools for Locally Quantized LLMs ## 🖥️ Desktop Applications | Application | Description | Download Link | |-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Llama.cpp** | A fast and efficient inference engine for GGUF models. | [GitHub Repository](https://github.com/ggml-org/llama.cpp) | | **Ollama** | A streamlined solution for running LLMs locally. | [Website](https://ollama.com/) | | **AnythingLLM** | An AI-powered knowledge management tool. | [GitHub Repository](https://github.com/Mintplex-Labs/anything-llm) | | **Open WebUI** | A user-friendly web interface for running local LLMs. | [GitHub Repository](https://github.com/open-webui/open-webui) | | **GPT4All** | A user-friendly desktop application supporting various LLMs, compatible with GGUF models. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | | **LM Studio** | A desktop application designed to run and manage local LLMs, supporting GGUF format. | [Website](https://lmstudio.ai/) | | **GPT4All Chat**| A chat application compatible with GGUF models for local, offline interactions. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | --- ## 📱 Mobile Applications | Application | Description | Download Link | |-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **ChatterUI** | A simple and lightweight LLM app for mobile devices. | [GitHub Repository](https://github.com/Vali-98/ChatterUI) | | **Maid** | Mobile Artificial Intelligence Distribution for running AI models on mobile devices. | [GitHub Repository](https://github.com/Mobile-Artificial-Intelligence/maid) | | **PocketPal AI** | A mobile AI assistant powered by local models. | [GitHub Repository](https://github.com/a-ghorbani/pocketpal-ai) | | **Layla** | A flexible platform for running various AI models on mobile devices. | [Website](https://www.layla-network.ai/) | --- ## 🎨 Image Generation Applications | Application | Description | Download Link | |-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Stable Diffusion** | An open-source AI model for generating images from text. | [GitHub Repository](https://github.com/CompVis/stable-diffusion) | | **Stable Diffusion WebUI** | A web application providing access to Stable Diffusion models via a browser interface. | [GitHub Repository](https://github.com/AUTOMATIC1111/stable-diffusion-webui) | | **Local Dream** | Android Stable Diffusion with Snapdragon NPU acceleration. Also supports CPU inference. | [GitHub Repository](https://github.com/xororz/local-dream) | | **Stable-Diffusion-Android (SDAI)** | An open-source AI art application for Android devices, enabling digital art creation. | [GitHub Repository](https://github.com/ShiftHackZ/Stable-Diffusion-Android) | --- """ # README'yi güncelle (ModelCard kullanarak) card.text += quant_list readme_path = Path(outdir)/"README.md" card.save(readme_path) if split_model: split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size) else: try: print(f"Uploading quantized model: {quantized_gguf_path}") api.upload_file( path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id, ) except Exception as e: raise Exception(f"Error uploading quantized model: {e}") if os.path.isfile(imatrix_path): try: print(f"Uploading imatrix.dat: {imatrix_path}") api.upload_file( path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id, ) except Exception as e: raise Exception(f"Error uploading imatrix.dat: {e}") api.upload_file( path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=new_repo_id, ) print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here return ( f'

✅ DONE


Find your repo here: {new_repo_id}', "llama.png", ) except Exception as e: return (f'

❌ ERROR


{escape(str(e))}
', "error.png") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) q_method = gr.Dropdown( ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "f16"], label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True ) imatrix_q_method = gr.Dropdown( ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False ) use_imatrix = gr.Checkbox( value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization." ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username." ) train_data_file = gr.File( label="Training Data File", file_types=["txt"], visible=False ) split_model = gr.Checkbox( value=False, label="Split Model", info="Shard the model using gguf-split." ) split_max_tensors = gr.Number( value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False ) split_max_size = gr.Textbox( label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", visible=False ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, ], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Create your own GGUF Quants, blazingly fast ⚡!", description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", api_name=False ) # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("You must be logged in to use all-gguf-same-where.") gr.LoginButton(min_width=250) iface.render() def update_split_visibility(split_model): return gr.update(visible=split_model), gr.update(visible=split_model) split_model.change( fn=update_split_visibility, inputs=split_model, outputs=[split_max_tensors, split_max_size] ) def update_visibility(use_imatrix): return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix) use_imatrix.change( fn=update_visibility, inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file] ) def restart_space(): HfApi().restart_space(repo_id="matrixportal/all-gguf-same-where", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)