Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,6 +59,8 @@ def predict_hb(age, workclass, education, occupation, race, gender, capital_ga
|
|
59 |
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
|
60 |
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
61 |
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
|
|
|
|
|
62 |
columns = {
|
63 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
64 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
@@ -70,10 +72,19 @@ def predict_hb(age, workclass, education, occupation, race, gender, capital_ga
|
|
70 |
# ann_model = pickle.load(ann_model_file)
|
71 |
scaler = StandardScaler()
|
72 |
X = scaler.fit_transform(fixed_features)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
def cleaning_features(data,race,hdbscan):
|
@@ -137,11 +148,15 @@ def cleaning_features(data,race,hdbscan):
|
|
137 |
|
138 |
data = pca(data)
|
139 |
if(hdbscan):
|
|
|
|
|
|
|
140 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
141 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
142 |
scaler = joblib.load("robust_scaler.pkl")
|
143 |
numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week']
|
144 |
data[numerical_features] = scaler.transform(data[numerical_features])
|
|
|
145 |
return data
|
146 |
|
147 |
# def pca(data):
|
|
|
59 |
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
|
60 |
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
61 |
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
|
62 |
+
|
63 |
+
|
64 |
columns = {
|
65 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
66 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
|
|
72 |
# ann_model = pickle.load(ann_model_file)
|
73 |
scaler = StandardScaler()
|
74 |
X = scaler.fit_transform(fixed_features)
|
75 |
+
|
76 |
+
clusterer = hdbscan.HDBSCAN(
|
77 |
+
min_cluster_size=220,
|
78 |
+
min_samples=117,
|
79 |
+
metric='euclidean',
|
80 |
+
cluster_selection_method='eom',
|
81 |
+
prediction_data=True,
|
82 |
+
cluster_selection_epsilon=0.28479667859306007
|
83 |
+
)
|
84 |
+
|
85 |
+
prediction = clusterer.fit_predict(X)
|
86 |
+
|
87 |
+
return f"Predicted Cluster (HDBSCAN): {prediction[-1]}"
|
88 |
|
89 |
|
90 |
def cleaning_features(data,race,hdbscan):
|
|
|
148 |
|
149 |
data = pca(data)
|
150 |
if(hdbscan):
|
151 |
+
df_transformed = pd.read_csv('dataset.csv')
|
152 |
+
X = df_transformed.drop('income', axis=1)
|
153 |
+
data = pd.concat([X, data], ignore_index=True)
|
154 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
155 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
156 |
scaler = joblib.load("robust_scaler.pkl")
|
157 |
numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week']
|
158 |
data[numerical_features] = scaler.transform(data[numerical_features])
|
159 |
+
|
160 |
return data
|
161 |
|
162 |
# def pca(data):
|