matsammut commited on
Commit
1bb20ca
·
verified ·
1 Parent(s): 27ef8c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -6,15 +6,16 @@ from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
6
  from sklearn.impute import KNNImputer
7
 
8
  # Load your saved model
9
- model = joblib.load("ann_model.joblib")
10
 
11
  # # Define the prediction function
12
  def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
13
  features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
14
  fixed_features = cleaning_features(features)
15
- prediction = model.predict(features)
16
- prediction = 1
17
- return "Income >50K" if prediction == 1 else "Income <=50K"
 
18
 
19
  def cleaning_features(data):
20
  le = LabelEncoder()
 
6
  from sklearn.impute import KNNImputer
7
 
8
  # Load your saved model
9
+ # model = joblib.load("ann_model.joblib")
10
 
11
  # # Define the prediction function
12
  def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
13
  features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
14
  fixed_features = cleaning_features(features)
15
+ # prediction = model.predict(features)
16
+ # prediction = 1
17
+ # return "Income >50K" if prediction == 1 else "Income <=50K"
18
+ return fixed_features
19
 
20
  def cleaning_features(data):
21
  le = LabelEncoder()