matsammut commited on
Commit
258d659
·
verified ·
1 Parent(s): 3ffe7c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -8,6 +8,7 @@ from sklearn.decomposition import PCA
8
  import pickle
9
  from tensorflow.keras.models import load_model
10
  import pickle
 
11
 
12
 
13
 
@@ -27,7 +28,6 @@ def predict_ann(age, workclass, education, marital_status, occupation, relations
27
  # with open('ann_model.pkl', 'rb') as ann_model_file:
28
  # ann_model = pickle.load(ann_model_file)
29
  scaler = StandardScaler()
30
- X = scaler.fit_transform(fixed_features)
31
  ann_model = load_model('ann_model.h5')
32
  prediction = ann_model.predict(fixed_features)
33
  # prediction = 1
@@ -48,7 +48,6 @@ def predict_rf(age, workclass, education, marital_status, occupation, relationsh
48
  # with open('ann_model.pkl', 'rb') as ann_model_file:
49
  # ann_model = pickle.load(ann_model_file)
50
  scaler = StandardScaler()
51
- X = scaler.fit_transform(fixed_features)
52
  rf_model = pickle.load(open('rf_model.pkl', 'rb'))
53
  prediction = rf_model.predict(fixed_features)
54
  # prediction = 1
@@ -71,9 +70,9 @@ def predict_hb(age, workclass, education, marital_status, occupation, relationsh
71
  scaler = StandardScaler()
72
  X = scaler.fit_transform(fixed_features)
73
  hb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
74
- prediction = hb_model.predict(fixed_features)
75
  # prediction = 1
76
- return "Income >50K" if prediction == 1 else "Income <=50K"
77
 
78
 
79
  def cleaning_features(data,race):
@@ -222,8 +221,8 @@ hb_interface = gr.Interface(
222
 
223
 
224
  interface = gr.TabbedInterface(
225
- [ann_interface, rf_interface,hb_interface],
226
- ["ANN Model", "Random Forest Model","HDBScan Model"]
227
  )
228
 
229
 
 
8
  import pickle
9
  from tensorflow.keras.models import load_model
10
  import pickle
11
+ import hdbscan
12
 
13
 
14
 
 
28
  # with open('ann_model.pkl', 'rb') as ann_model_file:
29
  # ann_model = pickle.load(ann_model_file)
30
  scaler = StandardScaler()
 
31
  ann_model = load_model('ann_model.h5')
32
  prediction = ann_model.predict(fixed_features)
33
  # prediction = 1
 
48
  # with open('ann_model.pkl', 'rb') as ann_model_file:
49
  # ann_model = pickle.load(ann_model_file)
50
  scaler = StandardScaler()
 
51
  rf_model = pickle.load(open('rf_model.pkl', 'rb'))
52
  prediction = rf_model.predict(fixed_features)
53
  # prediction = 1
 
70
  scaler = StandardScaler()
71
  X = scaler.fit_transform(fixed_features)
72
  hb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
73
+ prediction = hdbscan.approximate_predict(hb_model,fixed_features)
74
  # prediction = 1
75
+ return f"Predicted Cluster (HDBSCAN): {prediction}"
76
 
77
 
78
  def cleaning_features(data,race):
 
221
 
222
 
223
  interface = gr.TabbedInterface(
224
+ [ann_interface, rf_interface, hb_interface],
225
+ ["ANN Model", "Random Forest Model", "HDBScan Model"]
226
  )
227
 
228