Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,14 +31,12 @@ def cleaning_features(data):
|
|
31 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
32 |
columns_to_encode = ['race','marital-status','relationship']
|
33 |
|
34 |
-
|
35 |
-
# 1. Scale numerical features
|
36 |
-
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
37 |
-
|
38 |
-
# 2. Label encode gender and income
|
39 |
data['gender'] = le.fit_transform(data['gender'])
|
40 |
data['educational-num'] = le.fit_transform(data['educational-num'])
|
41 |
|
|
|
|
|
|
|
42 |
# 3. One-hot encode race
|
43 |
for N in columns_to_encode:
|
44 |
race_encoded = encoder.fit_transform(data[[N]])
|
|
|
31 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
32 |
columns_to_encode = ['race','marital-status','relationship']
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
data['gender'] = le.fit_transform(data['gender'])
|
35 |
data['educational-num'] = le.fit_transform(data['educational-num'])
|
36 |
|
37 |
+
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
38 |
+
|
39 |
+
|
40 |
# 3. One-hot encode race
|
41 |
for N in columns_to_encode:
|
42 |
race_encoded = encoder.fit_transform(data[[N]])
|