Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from sklearn.decomposition import PCA
|
|
11 |
|
12 |
# # Define the prediction function
|
13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
14 |
-
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
|
15 |
fixed_features = cleaning_features(features)
|
16 |
# prediction = model.predict(features)
|
17 |
# prediction = 1
|
@@ -24,8 +24,6 @@ def cleaning_features(data):
|
|
24 |
encoder = OneHotEncoder(sparse_output=False)
|
25 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
26 |
columns_to_encode = ['race','marital-status','relationship']
|
27 |
-
|
28 |
-
data.replace({'?': np.nan, 99999: np.nan}, inplace=True)
|
29 |
|
30 |
# 1. Scale numerical features
|
31 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
|
|
11 |
|
12 |
# # Define the prediction function
|
13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
14 |
+
features = np.array([age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country])
|
15 |
fixed_features = cleaning_features(features)
|
16 |
# prediction = model.predict(features)
|
17 |
# prediction = 1
|
|
|
24 |
encoder = OneHotEncoder(sparse_output=False)
|
25 |
numeric_cols = ['age', 'educational-num', 'hours-per-week']
|
26 |
columns_to_encode = ['race','marital-status','relationship']
|
|
|
|
|
27 |
|
28 |
# 1. Scale numerical features
|
29 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|