Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,8 +32,8 @@ def predict(age, workclass, education, marital_status, occupation, relationship,
|
|
32 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
33 |
|
34 |
def cleaning_features(data):
|
35 |
-
with open('race_onehot_encoder.pkl', 'rb') as enc_file:
|
36 |
-
|
37 |
|
38 |
with open('label_encoder_work.pkl', 'rb') as le_file:
|
39 |
le_work = pickle.load(le_file)
|
@@ -61,7 +61,7 @@ def cleaning_features(data):
|
|
61 |
"Doctorate": 15,
|
62 |
"Prof-school": 16
|
63 |
}
|
64 |
-
|
65 |
gender_mapping = {"Male":1,"Female":0}
|
66 |
country_mapping = {"United-States":1,"Other":0}
|
67 |
|
@@ -77,12 +77,18 @@ def cleaning_features(data):
|
|
77 |
|
78 |
data[numeric_cols] = scaler.transform(data[numeric_cols])
|
79 |
|
80 |
-
for
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
data = pca(data)
|
88 |
return data
|
|
|
32 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
33 |
|
34 |
def cleaning_features(data):
|
35 |
+
# with open('race_onehot_encoder.pkl', 'rb') as enc_file:
|
36 |
+
# encoder = pickle.load(enc_file)
|
37 |
|
38 |
with open('label_encoder_work.pkl', 'rb') as le_file:
|
39 |
le_work = pickle.load(le_file)
|
|
|
61 |
"Doctorate": 15,
|
62 |
"Prof-school": 16
|
63 |
}
|
64 |
+
race_categories = ["Amer-Indian-Eskimo", "Asian-Pac-Islander","Black", "Other","White"]
|
65 |
gender_mapping = {"Male":1,"Female":0}
|
66 |
country_mapping = {"United-States":1,"Other":0}
|
67 |
|
|
|
77 |
|
78 |
data[numeric_cols] = scaler.transform(data[numeric_cols])
|
79 |
|
80 |
+
for races in race_categories:
|
81 |
+
if data['race'] == race:
|
82 |
+
df[f'race_{races}'] = 1
|
83 |
+
else:
|
84 |
+
df[f'race_{races}'] = 0
|
85 |
+
# for N in columns_to_encode:
|
86 |
+
# race_encoded = encoder.transform(data[[N]])
|
87 |
+
# race_encoded_cols = encoder.get_feature_names_out([N])
|
88 |
+
# race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index)
|
89 |
+
# # Combine the encoded data with original dataframe
|
90 |
+
# data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1)
|
91 |
+
df = df.drop(columns=['race'])
|
92 |
|
93 |
data = pca(data)
|
94 |
return data
|