matsammut commited on
Commit
b18aa7e
·
verified ·
1 Parent(s): 29149b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -7,8 +7,7 @@ from sklearn.impute import KNNImputer
7
  from sklearn.decomposition import PCA
8
  import pickle
9
 
10
- # Load your saved model
11
- # model = joblib.load("ann_model.joblib")
12
 
13
  # # Define the prediction function
14
  def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
@@ -19,14 +18,13 @@ def predict(age, workclass, education, marital_status, occupation, relationship,
19
  "hours-per-week":[hours_per_week], "native-country":[native_country]}
20
  df = pd.DataFrame(data=columns)
21
  fixed_features = cleaning_features(df)
22
- # prediction = model.predict(features)
 
 
23
  # prediction = 1
24
- # return "Income >50K" if prediction == 1 else "Income <=50K"
25
- return print(fixed_features)
26
 
27
  def cleaning_features(data):
28
- # with open('race_onehot_encoder.pkl', 'rb') as enc_file:
29
- # encoder = pickle.load(enc_file)
30
 
31
  with open('label_encoder_work.pkl', 'rb') as le_file:
32
  le_work = pickle.load(le_file)
@@ -69,7 +67,7 @@ def cleaning_features(data):
69
 
70
  data[numeric_cols] = scaler.transform(data[numeric_cols])
71
 
72
- #data = pca(data)
73
  return data
74
 
75
  # def pca(data):
@@ -155,7 +153,7 @@ interface = gr.Interface(
155
  ["Male", "Female"],
156
  label="Gender"
157
  ),
158
- gr.Slider(1, 90, step=1, label="Hours Per Week"),
159
  gr.Slider(0, 100000, step=100, label="Capital Gain"),
160
  gr.Slider(0, 5000, step=50, label="Capital Loss"),
161
  gr.Dropdown(
 
7
  from sklearn.decomposition import PCA
8
  import pickle
9
 
10
+
 
11
 
12
  # # Define the prediction function
13
  def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
 
18
  "hours-per-week":[hours_per_week], "native-country":[native_country]}
19
  df = pd.DataFrame(data=columns)
20
  fixed_features = cleaning_features(df)
21
+ with open('ann_model.pkl', 'rb') as ann_model_file:
22
+ ann_model = pickle.load(ann_model_file)
23
+ prediction = ann_model.predict(fixed_features)
24
  # prediction = 1
25
+ return "Income >50K" if prediction == 1 else "Income <=50K"
 
26
 
27
  def cleaning_features(data):
 
 
28
 
29
  with open('label_encoder_work.pkl', 'rb') as le_file:
30
  le_work = pickle.load(le_file)
 
67
 
68
  data[numeric_cols] = scaler.transform(data[numeric_cols])
69
 
70
+ data = pca(data)
71
  return data
72
 
73
  # def pca(data):
 
153
  ["Male", "Female"],
154
  label="Gender"
155
  ),
156
+ gr.Slider(1, 60, step=1, label="Hours Per Week"),
157
  gr.Slider(0, 100000, step=100, label="Capital Gain"),
158
  gr.Slider(0, 5000, step=50, label="Capital Loss"),
159
  gr.Dropdown(