Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -179,7 +179,35 @@ def hbdscan_tranform(df_transformed):
|
|
179 |
return df_transformed
|
180 |
|
181 |
# Shared inputs
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
gr.Slider(18, 90, step=1, label="Age"),
|
184 |
gr.Dropdown(["Male", "Female"], label="Gender"),
|
185 |
gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
|
@@ -197,7 +225,7 @@ inputs = [
|
|
197 |
# Interfaces for each model
|
198 |
ann_interface = gr.Interface(
|
199 |
fn=predict_ann,
|
200 |
-
inputs=
|
201 |
outputs="text",
|
202 |
title="Artificial Neural Network",
|
203 |
description="Predict income using an Artificial Neural Network."
|
@@ -205,7 +233,7 @@ ann_interface = gr.Interface(
|
|
205 |
|
206 |
rf_interface = gr.Interface(
|
207 |
fn=predict_rf,
|
208 |
-
inputs=
|
209 |
outputs="text",
|
210 |
title="Random Forest",
|
211 |
description="Predict income using a Random Forest model."
|
@@ -213,17 +241,15 @@ rf_interface = gr.Interface(
|
|
213 |
|
214 |
hb_interface = gr.Interface(
|
215 |
fn=predict_hb,
|
216 |
-
inputs=
|
217 |
outputs="text",
|
218 |
title="HDBScan Clustering",
|
219 |
description="Predict income using a HDBScan Clustering model."
|
220 |
)
|
221 |
|
222 |
-
|
223 |
interface = gr.TabbedInterface(
|
224 |
[ann_interface, rf_interface, hb_interface],
|
225 |
["ANN Model", "Random Forest Model", "HDBScan Model"]
|
226 |
)
|
227 |
|
228 |
-
|
229 |
interface.launch()
|
|
|
179 |
return df_transformed
|
180 |
|
181 |
# Shared inputs
|
182 |
+
ann_inputs = [
|
183 |
+
gr.Slider(18, 90, step=1, label="Age"),
|
184 |
+
gr.Dropdown(["Male", "Female"], label="Gender"),
|
185 |
+
gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
|
186 |
+
gr.Dropdown(["Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", "12th", "HS-grad", "Some-college", "Assoc-voc", "Assoc-acdm", "Bachelors", "Masters", "Doctorate", "Prof-school"], label="Education"),
|
187 |
+
gr.Dropdown(["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status"),
|
188 |
+
gr.Dropdown(["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation"),
|
189 |
+
gr.Dropdown(["Wife", "Husband", "Own-child", "Not-in-family", "Other-relative", "Unmarried"], label="Relationship"),
|
190 |
+
gr.Dropdown(["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race"),
|
191 |
+
gr.Slider(0, 100000, step=100, label="Capital Gain"),
|
192 |
+
gr.Slider(0, 5000, step=50, label="Capital Loss"),
|
193 |
+
gr.Slider(1, 60, step=1, label="Hours Per Week"),
|
194 |
+
gr.Dropdown(["United-States", "Canada", "Mexico", "Other"], label="Native Country")
|
195 |
+
]
|
196 |
+
rf_inputs = [
|
197 |
+
gr.Slider(18, 90, step=1, label="Age"),
|
198 |
+
gr.Dropdown(["Male", "Female"], label="Gender"),
|
199 |
+
gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
|
200 |
+
gr.Dropdown(["Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", "12th", "HS-grad", "Some-college", "Assoc-voc", "Assoc-acdm", "Bachelors", "Masters", "Doctorate", "Prof-school"], label="Education"),
|
201 |
+
gr.Dropdown(["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status"),
|
202 |
+
gr.Dropdown(["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation"),
|
203 |
+
gr.Dropdown(["Wife", "Husband", "Own-child", "Not-in-family", "Other-relative", "Unmarried"], label="Relationship"),
|
204 |
+
gr.Dropdown(["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race"),
|
205 |
+
gr.Slider(0, 100000, step=100, label="Capital Gain"),
|
206 |
+
gr.Slider(0, 5000, step=50, label="Capital Loss"),
|
207 |
+
gr.Slider(1, 60, step=1, label="Hours Per Week"),
|
208 |
+
gr.Dropdown(["United-States", "Canada", "Mexico", "Other"], label="Native Country")
|
209 |
+
]
|
210 |
+
hbd_inputs = [
|
211 |
gr.Slider(18, 90, step=1, label="Age"),
|
212 |
gr.Dropdown(["Male", "Female"], label="Gender"),
|
213 |
gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
|
|
|
225 |
# Interfaces for each model
|
226 |
ann_interface = gr.Interface(
|
227 |
fn=predict_ann,
|
228 |
+
inputs=ann_inputs,
|
229 |
outputs="text",
|
230 |
title="Artificial Neural Network",
|
231 |
description="Predict income using an Artificial Neural Network."
|
|
|
233 |
|
234 |
rf_interface = gr.Interface(
|
235 |
fn=predict_rf,
|
236 |
+
inputs=rf_inputs,
|
237 |
outputs="text",
|
238 |
title="Random Forest",
|
239 |
description="Predict income using a Random Forest model."
|
|
|
241 |
|
242 |
hb_interface = gr.Interface(
|
243 |
fn=predict_hb,
|
244 |
+
inputs=hbd_inputs,
|
245 |
outputs="text",
|
246 |
title="HDBScan Clustering",
|
247 |
description="Predict income using a HDBScan Clustering model."
|
248 |
)
|
249 |
|
|
|
250 |
interface = gr.TabbedInterface(
|
251 |
[ann_interface, rf_interface, hb_interface],
|
252 |
["ANN Model", "Random Forest Model", "HDBScan Model"]
|
253 |
)
|
254 |
|
|
|
255 |
interface.launch()
|