matsammut commited on
Commit
b9cb41f
·
verified ·
1 Parent(s): c413a7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -6
app.py CHANGED
@@ -179,7 +179,35 @@ def hbdscan_tranform(df_transformed):
179
  return df_transformed
180
 
181
  # Shared inputs
182
- inputs = [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  gr.Slider(18, 90, step=1, label="Age"),
184
  gr.Dropdown(["Male", "Female"], label="Gender"),
185
  gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
@@ -197,7 +225,7 @@ inputs = [
197
  # Interfaces for each model
198
  ann_interface = gr.Interface(
199
  fn=predict_ann,
200
- inputs=inputs,
201
  outputs="text",
202
  title="Artificial Neural Network",
203
  description="Predict income using an Artificial Neural Network."
@@ -205,7 +233,7 @@ ann_interface = gr.Interface(
205
 
206
  rf_interface = gr.Interface(
207
  fn=predict_rf,
208
- inputs=inputs,
209
  outputs="text",
210
  title="Random Forest",
211
  description="Predict income using a Random Forest model."
@@ -213,17 +241,15 @@ rf_interface = gr.Interface(
213
 
214
  hb_interface = gr.Interface(
215
  fn=predict_hb,
216
- inputs=inputs,
217
  outputs="text",
218
  title="HDBScan Clustering",
219
  description="Predict income using a HDBScan Clustering model."
220
  )
221
 
222
-
223
  interface = gr.TabbedInterface(
224
  [ann_interface, rf_interface, hb_interface],
225
  ["ANN Model", "Random Forest Model", "HDBScan Model"]
226
  )
227
 
228
-
229
  interface.launch()
 
179
  return df_transformed
180
 
181
  # Shared inputs
182
+ ann_inputs = [
183
+ gr.Slider(18, 90, step=1, label="Age"),
184
+ gr.Dropdown(["Male", "Female"], label="Gender"),
185
+ gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
186
+ gr.Dropdown(["Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", "12th", "HS-grad", "Some-college", "Assoc-voc", "Assoc-acdm", "Bachelors", "Masters", "Doctorate", "Prof-school"], label="Education"),
187
+ gr.Dropdown(["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status"),
188
+ gr.Dropdown(["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation"),
189
+ gr.Dropdown(["Wife", "Husband", "Own-child", "Not-in-family", "Other-relative", "Unmarried"], label="Relationship"),
190
+ gr.Dropdown(["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race"),
191
+ gr.Slider(0, 100000, step=100, label="Capital Gain"),
192
+ gr.Slider(0, 5000, step=50, label="Capital Loss"),
193
+ gr.Slider(1, 60, step=1, label="Hours Per Week"),
194
+ gr.Dropdown(["United-States", "Canada", "Mexico", "Other"], label="Native Country")
195
+ ]
196
+ rf_inputs = [
197
+ gr.Slider(18, 90, step=1, label="Age"),
198
+ gr.Dropdown(["Male", "Female"], label="Gender"),
199
+ gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
200
+ gr.Dropdown(["Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", "12th", "HS-grad", "Some-college", "Assoc-voc", "Assoc-acdm", "Bachelors", "Masters", "Doctorate", "Prof-school"], label="Education"),
201
+ gr.Dropdown(["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status"),
202
+ gr.Dropdown(["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation"),
203
+ gr.Dropdown(["Wife", "Husband", "Own-child", "Not-in-family", "Other-relative", "Unmarried"], label="Relationship"),
204
+ gr.Dropdown(["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race"),
205
+ gr.Slider(0, 100000, step=100, label="Capital Gain"),
206
+ gr.Slider(0, 5000, step=50, label="Capital Loss"),
207
+ gr.Slider(1, 60, step=1, label="Hours Per Week"),
208
+ gr.Dropdown(["United-States", "Canada", "Mexico", "Other"], label="Native Country")
209
+ ]
210
+ hbd_inputs = [
211
  gr.Slider(18, 90, step=1, label="Age"),
212
  gr.Dropdown(["Male", "Female"], label="Gender"),
213
  gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
 
225
  # Interfaces for each model
226
  ann_interface = gr.Interface(
227
  fn=predict_ann,
228
+ inputs=ann_inputs,
229
  outputs="text",
230
  title="Artificial Neural Network",
231
  description="Predict income using an Artificial Neural Network."
 
233
 
234
  rf_interface = gr.Interface(
235
  fn=predict_rf,
236
+ inputs=rf_inputs,
237
  outputs="text",
238
  title="Random Forest",
239
  description="Predict income using a Random Forest model."
 
241
 
242
  hb_interface = gr.Interface(
243
  fn=predict_hb,
244
+ inputs=hbd_inputs,
245
  outputs="text",
246
  title="HDBScan Clustering",
247
  description="Predict income using a HDBScan Clustering model."
248
  )
249
 
 
250
  interface = gr.TabbedInterface(
251
  [ann_interface, rf_interface, hb_interface],
252
  ["ANN Model", "Random Forest Model", "HDBScan Model"]
253
  )
254
 
 
255
  interface.launch()