Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -66,14 +66,6 @@ def cleaning_features(data):
|
|
66 |
|
67 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
68 |
|
69 |
-
|
70 |
-
# 3. One-hot encode race
|
71 |
-
for N in columns_to_encode:
|
72 |
-
race_encoded = encoder.fit_transform(data[[N]])
|
73 |
-
race_encoded_cols = encoder.get_feature_names_out([N])
|
74 |
-
race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index)
|
75 |
-
# Combine the encoded data with original dataframe
|
76 |
-
data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1)
|
77 |
# Binarize native country
|
78 |
data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States')
|
79 |
data['native-country'] = data['native-country'].astype(int)
|
|
|
66 |
|
67 |
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Binarize native country
|
70 |
data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States')
|
71 |
data['native-country'] = data['native-country'].astype(int)
|