Spaces:
Running
Running
Major update of code. Adding new data with our generations
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitignore +2 -0
- app.py +346 -371
- clean_preferences.py +104 -0
- config.py +64 -0
- data/Real-Cartoon/sample_0/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/{sample_1/baseline.jpg β Real-Cartoon/sample_0/cp_bg_fg.jpg} +2 -2
- data/{sample_100 β Real-Cartoon/sample_0}/input_bg.jpg +2 -2
- data/{sample_154 β Real-Cartoon/sample_0}/input_fg.jpg +0 -0
- data/{sample_1/input_bg.jpg β Real-Cartoon/sample_0/kvedit.jpg} +2 -2
- data/Real-Cartoon/sample_0/prompt.txt +1 -0
- data/{sample_10 β Real-Cartoon/sample_0}/tf-icon.png +2 -2
- data/Real-Cartoon/sample_1/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/{sample_10/baseline.jpg β Real-Cartoon/sample_1/cp_bg_fg.jpg} +2 -2
- data/{sample_101 β Real-Cartoon/sample_1}/input_bg.jpg +2 -2
- data/{sample_121 β Real-Cartoon/sample_1}/input_fg.jpg +0 -0
- data/Real-Cartoon/sample_1/kvedit.jpg +3 -0
- data/Real-Cartoon/sample_1/prompt.txt +1 -0
- data/{sample_100 β Real-Cartoon/sample_1}/tf-icon.png +2 -2
- data/Real-Cartoon/sample_10/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/Real-Cartoon/sample_10/cp_bg_fg.jpg +3 -0
- data/{sample_102 β Real-Cartoon/sample_10}/input_bg.jpg +2 -2
- data/{sample_22 β Real-Cartoon/sample_10}/input_fg.jpg +0 -0
- data/Real-Cartoon/sample_10/kvedit.jpg +3 -0
- data/Real-Cartoon/sample_10/prompt.txt +1 -0
- data/{sample_101 β Real-Cartoon/sample_10}/tf-icon.png +2 -2
- data/Real-Cartoon/sample_11/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/Real-Cartoon/sample_11/cp_bg_fg.jpg +3 -0
- data/Real-Cartoon/sample_11/input_bg.jpg +3 -0
- data/{sample_131 β Real-Cartoon/sample_11}/input_fg.jpg +0 -0
- data/Real-Cartoon/sample_11/kvedit.jpg +3 -0
- data/Real-Cartoon/sample_11/prompt.txt +1 -0
- data/{sample_1 β Real-Cartoon/sample_11}/tf-icon.png +2 -2
- data/Real-Cartoon/sample_12/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/{sample_213/tf-icon.png β Real-Cartoon/sample_12/cp_bg_fg.jpg} +2 -2
- data/Real-Cartoon/sample_12/input_bg.jpg +3 -0
- data/{sample_18 β Real-Cartoon/sample_12}/input_fg.jpg +0 -0
- data/Real-Cartoon/sample_12/kvedit.jpg +3 -0
- data/Real-Cartoon/sample_12/prompt.txt +1 -0
- data/Real-Cartoon/sample_12/tf-icon.png +3 -0
- data/Real-Cartoon/sample_13/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/Real-Cartoon/sample_13/cp_bg_fg.jpg +3 -0
- data/Real-Cartoon/sample_13/input_bg.jpg +3 -0
- data/{sample_160 β Real-Cartoon/sample_13}/input_fg.jpg +0 -0
- data/Real-Cartoon/sample_13/kvedit.jpg +3 -0
- data/Real-Cartoon/sample_13/prompt.txt +1 -0
- data/Real-Cartoon/sample_13/tf-icon.png +3 -0
- data/Real-Cartoon/sample_14/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png +3 -0
- data/Real-Cartoon/sample_14/cp_bg_fg.jpg +3 -0
- data/Real-Cartoon/sample_14/input_bg.jpg +3 -0
- data/{sample_1 β Real-Cartoon/sample_14}/input_fg.jpg +0 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
benchmark_images_generations/
|
2 |
code/
|
3 |
results/
|
|
|
|
|
|
1 |
benchmark_images_generations/
|
2 |
code/
|
3 |
results/
|
4 |
+
backup/
|
5 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,396 +1,371 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
import random
|
4 |
-
import
|
5 |
-
from pathlib import Path
|
6 |
-
from datetime import datetime, timedelta
|
7 |
-
import tempfile
|
8 |
-
from huggingface_hub import HfApi, hf_hub_download, login
|
9 |
-
from huggingface_hub.utils import RepositoryNotFoundError, EntryNotFoundError
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
-
import
|
12 |
-
|
13 |
-
import
|
14 |
-
import
|
15 |
-
|
16 |
-
# ---
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp"]
|
26 |
-
|
27 |
-
# --- Global State for Upload Logic ---
|
28 |
-
hf_api = None
|
29 |
-
scheduler = BackgroundScheduler(daemon=True)
|
30 |
-
upload_lock = threading.Lock()
|
31 |
-
new_preferences_recorded_since_last_upload = threading.Event()
|
32 |
-
|
33 |
-
# --- Hugging Face Hub Login & Initialization ---
|
34 |
-
def initialize_hub_and_results():
|
35 |
-
global hf_api
|
36 |
-
if HF_TOKEN:
|
37 |
-
print("Logging into Hugging Face Hub...")
|
38 |
try:
|
39 |
-
|
40 |
-
|
41 |
-
print(f"
|
42 |
-
|
43 |
-
repo_id=DATASET_REPO_ID,
|
44 |
-
filename=RESULTS_FILENAME_IN_REPO,
|
45 |
-
repo_type="dataset",
|
46 |
-
token=HF_TOKEN,
|
47 |
-
local_dir=TEMP_DIR,
|
48 |
-
local_dir_use_symlinks=False
|
49 |
-
)
|
50 |
-
print(f"Successfully downloaded existing {RESULTS_FILENAME_IN_REPO} to {LOCAL_RESULTS_FILE}")
|
51 |
-
except EntryNotFoundError:
|
52 |
-
print(f"{RESULTS_FILENAME_IN_REPO} not found in repo. Will create locally.")
|
53 |
-
except RepositoryNotFoundError:
|
54 |
-
print(f"Error: Dataset repository {DATASET_REPO_ID} not found or token lacks permissions.")
|
55 |
-
print("Results saving will be disabled.")
|
56 |
-
hf_api = None
|
57 |
except Exception as e:
|
58 |
-
print(f"Error
|
59 |
-
|
60 |
else:
|
61 |
-
print("
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
for item in DATA_DIR.iterdir():
|
77 |
-
if item.is_dir():
|
78 |
-
prompt_file = item / "prompt.txt"
|
79 |
-
input_bg = find_image(item, "input_bg")
|
80 |
-
input_fg = find_image(item, "input_fg")
|
81 |
-
output_baseline = find_image(item, "baseline")
|
82 |
-
output_tficon = find_image(item, "tf-icon")
|
83 |
-
if prompt_file.exists() and input_bg and input_fg and output_baseline and output_tficon:
|
84 |
-
sample_ids.append(item.name)
|
85 |
-
return sample_ids
|
86 |
-
|
87 |
-
def load_sample_data(sample_id: str) -> dict | None:
|
88 |
-
sample_path = DATA_DIR / sample_id
|
89 |
-
if not sample_path.is_dir():
|
90 |
-
return None
|
91 |
-
|
92 |
-
prompt_file = sample_path / "prompt.txt"
|
93 |
-
input_bg_path = find_image(sample_path, "input_bg")
|
94 |
-
input_fg_path = find_image(sample_path, "input_fg")
|
95 |
-
output_baseline_path = find_image(sample_path, "baseline")
|
96 |
-
output_tficon_path = find_image(sample_path, "tf-icon")
|
97 |
-
|
98 |
-
if not all([prompt_file.exists(), input_bg_path, input_fg_path, output_baseline_path, output_tficon_path]):
|
99 |
-
print(f"Warning: Missing files in sample {sample_id}")
|
100 |
-
return None
|
101 |
-
|
102 |
-
try:
|
103 |
-
prompt = prompt_file.read_text().strip()
|
104 |
-
except Exception as e:
|
105 |
-
print(f"Error reading prompt for {sample_id}: {e}")
|
106 |
-
return None
|
107 |
-
|
108 |
-
return {
|
109 |
-
"id": sample_id,
|
110 |
-
"prompt": prompt,
|
111 |
-
"input_bg": str(input_bg_path),
|
112 |
-
"input_fg": str(input_fg_path),
|
113 |
-
"output_baseline": str(output_baseline_path),
|
114 |
-
"output_tficon": str(output_tficon_path),
|
115 |
-
}
|
116 |
-
|
117 |
-
# --- State and UI Logic ---
|
118 |
-
|
119 |
-
INITIAL_SAMPLE_IDS = get_sample_ids()
|
120 |
-
|
121 |
-
def get_next_sample(available_ids: list[str]) -> tuple[dict | None, list[str]]:
|
122 |
-
if not available_ids:
|
123 |
-
return None, []
|
124 |
-
chosen_id = random.choice(available_ids)
|
125 |
-
remaining_ids = [id for id in available_ids if id != chosen_id]
|
126 |
-
sample_data = load_sample_data(chosen_id)
|
127 |
-
return sample_data, remaining_ids
|
128 |
-
|
129 |
-
def display_new_sample(state: dict, available_ids: list[str]):
|
130 |
-
sample_data, remaining_ids = get_next_sample(available_ids)
|
131 |
-
|
132 |
-
if not sample_data:
|
133 |
-
return {
|
134 |
-
prompt_display: gr.update(value="**Prompt:** No more samples available. Thank you!"),
|
135 |
-
input_bg_display: gr.update(value=None, visible=False),
|
136 |
-
input_fg_display: gr.update(value=None, visible=False),
|
137 |
-
output_a_display: gr.update(value=None, visible=False),
|
138 |
-
output_b_display: gr.update(value=None, visible=False),
|
139 |
-
choice_button_a: gr.update(visible=False),
|
140 |
-
choice_button_b: gr.update(visible=False),
|
141 |
-
next_button: gr.update(visible=False),
|
142 |
-
status_display: gr.update(value="**Status:** Completed!"),
|
143 |
-
app_state: state,
|
144 |
-
available_samples_state: remaining_ids
|
145 |
-
}
|
146 |
-
|
147 |
-
outputs = [
|
148 |
-
{"model_name": "baseline", "path": sample_data["output_baseline"]},
|
149 |
-
{"model_name": "tf-icon", "path": sample_data["output_tficon"]},
|
150 |
-
]
|
151 |
-
random.shuffle(outputs)
|
152 |
-
output_a = outputs[0]
|
153 |
-
output_b = outputs[1]
|
154 |
-
|
155 |
-
state = {
|
156 |
-
"current_sample_id": sample_data["id"],
|
157 |
-
"output_a_model_name": output_a["model_name"],
|
158 |
-
"output_b_model_name": output_b["model_name"],
|
159 |
-
}
|
160 |
-
|
161 |
-
return {
|
162 |
-
prompt_display: gr.update(value=f"**Prompt:** {sample_data['prompt']}"),
|
163 |
-
input_bg_display: gr.update(value=sample_data["input_bg"], visible=True),
|
164 |
-
input_fg_display: gr.update(value=sample_data["input_fg"], visible=True),
|
165 |
-
output_a_display: gr.update(value=output_a["path"], visible=True),
|
166 |
-
output_b_display: gr.update(value=output_b["path"], visible=True),
|
167 |
-
choice_button_a: gr.update(visible=True, interactive=True),
|
168 |
-
choice_button_b: gr.update(visible=True, interactive=True),
|
169 |
-
next_button: gr.update(visible=False),
|
170 |
-
status_display: gr.update(value="**Status:** Please choose the image you prefer."),
|
171 |
-
app_state: state,
|
172 |
-
available_samples_state: remaining_ids
|
173 |
-
}
|
174 |
-
|
175 |
-
def record_preference(choice: str, state: dict, request: gr.Request):
|
176 |
-
if not request:
|
177 |
-
print("Error: Request object is None. Cannot get session ID.")
|
178 |
-
session_id = "unknown_session"
|
179 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
try:
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
if not state or "current_sample_id" not in state:
|
187 |
-
print("Warning: State missing, cannot record preference.")
|
188 |
-
return {
|
189 |
-
choice_button_a: gr.update(interactive=False),
|
190 |
-
choice_button_b: gr.update(interactive=False),
|
191 |
-
next_button: gr.update(visible=True, interactive=True),
|
192 |
-
status_display: gr.update(value="**Status:** Error: Session state lost. Click Next Sample."),
|
193 |
-
app_state: state
|
194 |
-
}
|
195 |
-
|
196 |
-
chosen_model_name = state["output_a_model_name"] if choice == "A" else state["output_b_model_name"]
|
197 |
-
baseline_display = "A" if state["output_a_model_name"] == "baseline" else "B"
|
198 |
-
tficon_display = "B" if state["output_a_model_name"] == "baseline" else "A"
|
199 |
-
|
200 |
-
new_row = {
|
201 |
-
"timestamp": datetime.now().isoformat(),
|
202 |
-
"session_id": session_id,
|
203 |
-
"sample_id": state["current_sample_id"],
|
204 |
-
"baseline_displayed_as": baseline_display,
|
205 |
-
"tficon_displayed_as": tficon_display,
|
206 |
-
"chosen_display": choice,
|
207 |
-
"chosen_model_name": chosen_model_name
|
208 |
-
}
|
209 |
-
header = list(new_row.keys())
|
210 |
-
|
211 |
-
try:
|
212 |
-
with upload_lock:
|
213 |
-
file_exists = LOCAL_RESULTS_FILE.exists()
|
214 |
-
mode = 'a' if file_exists else 'w'
|
215 |
-
with open(LOCAL_RESULTS_FILE, mode, newline='', encoding='utf-8') as f:
|
216 |
-
writer = csv.DictWriter(f, fieldnames=header)
|
217 |
-
if not file_exists or os.path.getsize(LOCAL_RESULTS_FILE) == 0:
|
218 |
-
writer.writeheader()
|
219 |
-
print(f"Created or wrote header to {LOCAL_RESULTS_FILE}")
|
220 |
-
writer.writerow(new_row)
|
221 |
-
print(f"Appended preference for {state['current_sample_id']} to local file.")
|
222 |
-
new_preferences_recorded_since_last_upload.set()
|
223 |
-
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Error writing local results file {LOCAL_RESULTS_FILE}: {e}")
|
226 |
-
return {
|
227 |
-
choice_button_a: gr.update(interactive=False),
|
228 |
-
choice_button_b: gr.update(interactive=False),
|
229 |
-
next_button: gr.update(visible=True, interactive=True),
|
230 |
-
status_display: gr.update(value=f"**Status:** Error saving preference locally: {e}. Click Next."),
|
231 |
-
app_state: state
|
232 |
-
}
|
233 |
-
|
234 |
-
return {
|
235 |
-
choice_button_a: gr.update(interactive=False),
|
236 |
-
choice_button_b: gr.update(interactive=False),
|
237 |
-
next_button: gr.update(visible=True, interactive=True),
|
238 |
-
status_display: gr.update(value=f"**Status:** Preference recorded (Chose {choice}). Click Next Sample."),
|
239 |
-
app_state: state
|
240 |
-
}
|
241 |
-
|
242 |
-
def upload_preferences_to_hub():
|
243 |
-
print("Periodic upload check triggered.")
|
244 |
-
if not hf_api:
|
245 |
-
print("Upload check skipped: Hugging Face API not available.")
|
246 |
-
return
|
247 |
-
|
248 |
-
if not new_preferences_recorded_since_last_upload.is_set():
|
249 |
-
print("Upload check skipped: No new preferences recorded since last upload.")
|
250 |
-
return
|
251 |
-
|
252 |
-
with upload_lock:
|
253 |
-
if not new_preferences_recorded_since_last_upload.is_set():
|
254 |
-
print("Upload check skipped (race condition avoided): No new preferences.")
|
255 |
-
return
|
256 |
-
|
257 |
-
if not LOCAL_RESULTS_FILE.exists() or os.path.getsize(LOCAL_RESULTS_FILE) == 0:
|
258 |
-
print("Upload check skipped: Local results file is missing or empty.")
|
259 |
-
new_preferences_recorded_since_last_upload.clear()
|
260 |
-
return
|
261 |
-
|
262 |
-
try:
|
263 |
-
print(f"Attempting to upload {LOCAL_RESULTS_FILE} to {DATASET_REPO_ID}/{RESULTS_FILENAME_IN_REPO}")
|
264 |
-
start_time = time.time()
|
265 |
-
hf_api.upload_file(
|
266 |
-
path_or_fileobj=str(LOCAL_RESULTS_FILE),
|
267 |
-
path_in_repo=RESULTS_FILENAME_IN_REPO,
|
268 |
-
repo_id=DATASET_REPO_ID,
|
269 |
-
repo_type="dataset",
|
270 |
-
commit_message=f"Periodic upload of preferences - {datetime.now().isoformat()}"
|
271 |
-
)
|
272 |
-
end_time = time.time()
|
273 |
-
print(f"Successfully uploaded preferences. Took {end_time - start_time:.2f} seconds.")
|
274 |
-
new_preferences_recorded_since_last_upload.clear()
|
275 |
except Exception as e:
|
276 |
-
print(f"Error
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
)
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
gr.Markdown("## Inputs")
|
297 |
-
with gr.Row():
|
298 |
-
prompt_display = gr.Markdown("**Prompt:** Loading...")
|
299 |
with gr.Row():
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
with gr.Column():
|
304 |
-
gr.Markdown("
|
305 |
-
|
|
|
|
|
|
|
|
|
306 |
|
307 |
gr.Markdown("---")
|
308 |
-
gr.Markdown("## Choose your preferred
|
309 |
|
|
|
|
|
310 |
with gr.Row():
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
outputs=[
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
328 |
]
|
329 |
)
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
api_name=False,
|
336 |
-
)
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
if __name__ == "__main__":
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
import os
|
4 |
import random
|
5 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
import config
|
10 |
+
import utils
|
11 |
+
|
12 |
+
# --- Global Variables & Initial Setup ---
|
13 |
+
# Attempt to log in to Hugging Face Hub at startup
|
14 |
+
utils.login_hugging_face()
|
15 |
+
|
16 |
+
# Load preferences: Try from Hub, then local, then empty
|
17 |
+
preferences_df = utils.load_preferences_from_hf_hub(config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE)
|
18 |
+
if preferences_df is None:
|
19 |
+
if os.path.exists(config.RESULTS_CSV_FILE):
|
20 |
+
print(f"Loading preferences from local file: {config.RESULTS_CSV_FILE}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
+
preferences_df = pd.read_csv(config.RESULTS_CSV_FILE)
|
23 |
+
except pd.errors.EmptyDataError:
|
24 |
+
print(f"Local preferences file {config.RESULTS_CSV_FILE} is empty. Starting fresh.")
|
25 |
+
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
except Exception as e:
|
27 |
+
print(f"Error loading local {config.RESULTS_CSV_FILE}: {e}. Starting fresh.")
|
28 |
+
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
|
29 |
else:
|
30 |
+
print("No existing preferences found on Hub or locally. Starting with an empty table.")
|
31 |
+
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
|
32 |
+
|
33 |
+
# Scan for available data
|
34 |
+
ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)
|
35 |
+
if not ALL_SAMPLES_BY_DOMAIN:
|
36 |
+
print(f"CRITICAL: No data found in {config.DATA_FOLDER}. The app might not function correctly.")
|
37 |
+
# Potentially raise an error or display a message in the UI if no data
|
38 |
+
|
39 |
+
# --- Scheduler for Periodic Uploads ---
|
40 |
+
def scheduled_upload_job():
|
41 |
+
global preferences_df
|
42 |
+
print(f"Running scheduled job: Saving and uploading preferences at {datetime.now()}")
|
43 |
+
if preferences_df is not None and not preferences_df.empty:
|
44 |
+
utils.save_preferences_to_hf_hub(preferences_df, config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE, commit_message="Periodic background update")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
+
print("Scheduled job: Preferences DataFrame is empty. Nothing to upload.")
|
47 |
+
|
48 |
+
scheduler = BackgroundScheduler()
|
49 |
+
scheduler.add_job(scheduled_upload_job, 'interval', hours=config.PUSH_INTERVAL_HOURS)
|
50 |
+
scheduler.start()
|
51 |
+
print(f"Scheduler started. Will attempt to upload preferences every {config.PUSH_INTERVAL_HOURS} hour(s).")
|
52 |
+
|
53 |
+
|
54 |
+
# --- Core Gradio App Functions ---
|
55 |
+
def start_new_session():
|
56 |
+
"""Initializes a new user session."""
|
57 |
+
session_id = utils.generate_session_id()
|
58 |
+
sample_queue = utils.prepare_session_samples(ALL_SAMPLES_BY_DOMAIN, config.SAMPLES_PER_DOMAIN)
|
59 |
+
current_sample_index = 0
|
60 |
+
if not sample_queue:
|
61 |
+
no_samples_msg = f"# π₯ No Samples Available!\n\n### Please check the data folder configuration or try again later."
|
62 |
+
return session_id, sample_queue, current_sample_index, no_samples_msg, None, None, None, [], [], True
|
63 |
+
|
64 |
+
print(f"New session started: {session_id}, with {len(sample_queue)} samples.")
|
65 |
+
domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag = load_and_display_sample(sample_queue, current_sample_index)
|
66 |
+
return session_id, sample_queue, current_sample_index, domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag
|
67 |
+
|
68 |
+
|
69 |
+
def load_and_display_sample(sample_queue, current_sample_index):
|
70 |
+
"""Loads and prepares a single sample for display."""
|
71 |
+
if not sample_queue or current_sample_index >= len(sample_queue):
|
72 |
+
end_session_msg = f"# π All Rated! π\n\n### All samples for this session have been rated. Thank you!"
|
73 |
+
return end_session_msg, None, None, None, [], [], True # End of session
|
74 |
+
|
75 |
+
domain, sample_id = sample_queue[current_sample_index]
|
76 |
+
sample_data = utils.load_sample_data(domain, sample_id)
|
77 |
+
|
78 |
+
if sample_data is None:
|
79 |
+
print(f"Error loading sample {domain}/{sample_id}. Skipping.")
|
80 |
+
error_msg = f"## β οΈ Error Loading Sample\n\nCould not load data for {domain}/{sample_id}. Skipping to the next one."
|
81 |
+
return error_msg, None, None, None, [], [], False
|
82 |
+
|
83 |
+
prompt_text = sample_data["prompt"]
|
84 |
+
bg_img_path = sample_data["background_img_path"]
|
85 |
+
fg_img_path = sample_data["foreground_img_path"]
|
86 |
+
|
87 |
+
# Load input bg/fg images without forcing them to be square
|
88 |
+
# The gr.Image component will handle scaling to the specified height while preserving aspect ratio.
|
89 |
+
bg_image_to_display = Image.open(bg_img_path)
|
90 |
+
fg_image_to_display = Image.open(fg_img_path)
|
91 |
+
|
92 |
+
output_model_keys = list(sample_data["output_image_paths"].keys())
|
93 |
+
random.shuffle(output_model_keys)
|
94 |
+
|
95 |
+
displayed_models_info = []
|
96 |
+
output_images_for_display = []
|
97 |
+
|
98 |
+
# square_size is still used for output option images
|
99 |
+
square_size = (config.IMAGE_DISPLAY_SIZE[0], config.IMAGE_DISPLAY_SIZE[0])
|
100 |
+
|
101 |
+
for model_key in output_model_keys:
|
102 |
+
img_path = sample_data["output_image_paths"][model_key]
|
103 |
try:
|
104 |
+
img = Image.open(img_path).resize(square_size) # Output images remain square
|
105 |
+
output_images_for_display.append(img)
|
106 |
+
displayed_models_info.append((model_key, img_path))
|
107 |
+
except FileNotFoundError:
|
108 |
+
print(f"Image not found: {img_path} for model {model_key}. Skipping this option.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
except Exception as e:
|
110 |
+
print(f"Error loading or resizing image {img_path}: {e}. Skipping this option.")
|
111 |
+
|
112 |
+
blank_image = Image.new('RGB', square_size, (200, 200, 200))
|
113 |
+
while len(output_images_for_display) < 4:
|
114 |
+
output_images_for_display.append(blank_image)
|
115 |
+
displayed_models_info.append(("BLANK_SLOT", "N/A"))
|
116 |
+
|
117 |
+
domain_prompt_markdown = f"""
|
118 |
+
<div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
|
119 |
+
|
120 |
+
### Domain: {domain}
|
121 |
+
|
122 |
+
</div>
|
123 |
+
<br>
|
124 |
+
<div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
|
125 |
+
|
126 |
+
## Prompt
|
127 |
+
|
128 |
+
### _"{prompt_text}"_
|
129 |
+
|
130 |
+
</div>
|
131 |
+
"""
|
132 |
+
|
133 |
+
return (
|
134 |
+
domain_prompt_markdown,
|
135 |
+
bg_image_to_display, # Pass the PIL image directly
|
136 |
+
fg_image_to_display, # Pass the PIL image directly
|
137 |
+
sample_data,
|
138 |
+
output_images_for_display[:4],
|
139 |
+
displayed_models_info[:4],
|
140 |
+
False
|
141 |
)
|
142 |
|
143 |
+
def process_vote(choice_index, session_id, sample_queue, current_sample_index, current_sample_data, displayed_models_info_for_sample):
|
144 |
+
global preferences_df
|
145 |
+
|
146 |
+
if current_sample_data is None or not displayed_models_info_for_sample or choice_index >= len(displayed_models_info_for_sample):
|
147 |
+
print("Error: Invalid data for processing vote. Skipping.")
|
148 |
+
current_sample_index += 1
|
149 |
+
if current_sample_index >= len(sample_queue):
|
150 |
+
error_end_msg = f"# β οΈ Error Processing Vote β οΈ\n\n### An issue occurred. The session has ended."
|
151 |
+
return preferences_df, current_sample_index, error_end_msg, None, None, None, [], [], True
|
152 |
+
else:
|
153 |
+
next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
|
154 |
+
return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide
|
155 |
+
|
156 |
+
domain, sample_id = sample_queue[current_sample_index]
|
157 |
+
preferred_model_key, _ = displayed_models_info_for_sample[choice_index]
|
158 |
+
|
159 |
+
if preferred_model_key == "BLANK_SLOT":
|
160 |
+
print("User clicked on a blank slot. Vote not recorded. Please select a valid image.")
|
161 |
+
_prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide = load_and_display_sample(sample_queue, current_sample_index)
|
162 |
+
return preferences_df, current_sample_index, _prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide
|
163 |
+
|
164 |
+
print(f"Session {session_id}: Voted for model '{config.MODEL_DISPLAY_NAMES.get(preferred_model_key, preferred_model_key)}' (key: {preferred_model_key}) for sample {domain}/{sample_id}")
|
165 |
+
|
166 |
+
preferences_df = utils.record_preference(
|
167 |
+
df=preferences_df,
|
168 |
+
session_id=session_id,
|
169 |
+
domain=domain,
|
170 |
+
sample_id=sample_id,
|
171 |
+
prompt=current_sample_data["prompt"],
|
172 |
+
bg_path=current_sample_data["background_img_path"],
|
173 |
+
fg_path=current_sample_data["foreground_img_path"],
|
174 |
+
displayed_models_info=displayed_models_info_for_sample,
|
175 |
+
preferred_model_key=preferred_model_key
|
176 |
+
)
|
177 |
+
|
178 |
+
try:
|
179 |
+
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
|
180 |
+
print(f"Preferences saved locally to {config.RESULTS_CSV_FILE}")
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Error saving preferences locally: {e}")
|
183 |
+
|
184 |
+
current_sample_index += 1
|
185 |
+
if current_sample_index >= len(sample_queue):
|
186 |
+
utils.save_preferences_to_hf_hub(preferences_df, config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE, commit_message="Session end update")
|
187 |
+
final_msg = f"# π Session Complete! π\n\n### All samples have been rated. Thank you for your participation!"
|
188 |
+
return preferences_df, current_sample_index, final_msg, None, None, None, [], [], True
|
189 |
+
|
190 |
+
next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
|
191 |
+
return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide
|
192 |
+
|
193 |
+
|
194 |
+
# --- Gradio UI Definition ---
|
195 |
+
custom_css = """
|
196 |
+
.custom-vote-button {
|
197 |
+
background-color: #FFA500 !important; /* Light Orange for normal state */
|
198 |
+
border-color: #FFA500 !important; /* Light Orange for normal state */
|
199 |
+
color: white !important;
|
200 |
+
}
|
201 |
+
.custom-vote-button:hover {
|
202 |
+
background-color: #FF8C00 !important; /* Dark Orange for hover state */
|
203 |
+
border-color: #FF8C00 !important; /* Dark Orange for hover state */
|
204 |
+
color: white !important;
|
205 |
+
}
|
206 |
+
"""
|
207 |
+
|
208 |
+
with gr.Blocks(title=config.APP_TITLE, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue), css=custom_css) as demo:
|
209 |
+
session_id_state = gr.State()
|
210 |
+
sample_queue_state = gr.State([])
|
211 |
+
current_sample_index_state = gr.State(0)
|
212 |
+
current_sample_data_state = gr.State()
|
213 |
+
displayed_models_info_state = gr.State([])
|
214 |
+
preferences_df_state = gr.State(value=preferences_df)
|
215 |
+
|
216 |
+
gr.Markdown(f"# {config.APP_TITLE}")
|
217 |
+
gr.Markdown(config.APP_DESCRIPTION)
|
218 |
|
|
|
|
|
|
|
219 |
with gr.Row():
|
220 |
+
start_button = gr.Button("Start New Session / Load First Sample", variant="primary")
|
221 |
+
|
222 |
+
with gr.Row(equal_height=False):
|
223 |
+
with gr.Column(scale=1):
|
224 |
+
domain_prompt_info_display = gr.Markdown(value="### Click 'Start New Session' to begin.")
|
225 |
+
|
226 |
+
with gr.Column(scale=2):
|
227 |
+
with gr.Row():
|
228 |
+
input_bg_image_display = gr.Image(label="Input Background", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
|
229 |
+
input_fg_image_display = gr.Image(label="Input Foreground", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
|
230 |
|
231 |
gr.Markdown("---")
|
232 |
+
gr.Markdown("## Choose your preferred composed image:")
|
233 |
|
234 |
+
output_image_displays = []
|
235 |
+
vote_buttons = []
|
236 |
with gr.Row():
|
237 |
+
for i in range(4):
|
238 |
+
with gr.Column():
|
239 |
+
img_display = gr.Image(label=f"Option {i+1}", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], width=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
|
240 |
+
output_image_displays.append(img_display)
|
241 |
+
vote_btn = gr.Button(f"Select Option {i+1}", elem_id=f"vote_btn_{i}", elem_classes=["custom-vote-button"])
|
242 |
+
vote_buttons.append(vote_btn)
|
243 |
+
|
244 |
+
end_of_session_msg_display = gr.Markdown("", visible=True)
|
245 |
+
|
246 |
+
def handle_start_session():
|
247 |
+
s_id, s_queue, s_idx, domain_prompt_or_end_msg, bg, fg, s_data, out_imgs, disp_info, end = start_new_session()
|
248 |
+
|
249 |
+
while len(out_imgs) < 4: out_imgs.append(None)
|
250 |
+
while len(disp_info) < 4: disp_info.append(("BLANK_SLOT", "N/A"))
|
251 |
+
|
252 |
+
updates = {
|
253 |
+
session_id_state: s_id,
|
254 |
+
sample_queue_state: s_queue,
|
255 |
+
current_sample_index_state: s_idx,
|
256 |
+
domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
|
257 |
+
input_bg_image_display: bg,
|
258 |
+
input_fg_image_display: fg,
|
259 |
+
current_sample_data_state: s_data,
|
260 |
+
displayed_models_info_state: disp_info,
|
261 |
+
end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
|
262 |
+
}
|
263 |
+
for i in range(4):
|
264 |
+
updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
|
265 |
+
num_actual_outputs = 0
|
266 |
+
if s_data and "output_image_paths" in s_data and s_data["output_image_paths"]:
|
267 |
+
num_actual_outputs = sum(1 for m_key, _ in disp_info if m_key != "BLANK_SLOT" and m_key is not None)
|
268 |
+
updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
|
269 |
+
return updates
|
270 |
+
|
271 |
+
start_button.click(
|
272 |
+
fn=handle_start_session,
|
273 |
+
inputs=[],
|
274 |
outputs=[
|
275 |
+
session_id_state, sample_queue_state, current_sample_index_state,
|
276 |
+
domain_prompt_info_display,
|
277 |
+
input_bg_image_display, input_fg_image_display,
|
278 |
+
current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
|
279 |
+
*output_image_displays, *vote_buttons
|
280 |
]
|
281 |
)
|
282 |
|
283 |
+
def make_vote_fn(choice_idx):
|
284 |
+
def vote_action(s_id, s_queue, s_idx, current_s_data, disp_info_for_sample, prefs_df_val):
|
285 |
+
global preferences_df
|
286 |
+
preferences_df = prefs_df_val
|
|
|
|
|
287 |
|
288 |
+
new_prefs_df, new_s_idx, domain_prompt_or_end_msg, bg, fg, new_s_data, out_imgs, new_disp_info, end = process_vote(
|
289 |
+
choice_idx, s_id, s_queue, s_idx, current_s_data, disp_info_for_sample
|
290 |
+
)
|
291 |
+
|
292 |
+
while len(out_imgs) < 4: out_imgs.append(None)
|
293 |
+
while len(new_disp_info) < 4: new_disp_info.append(("BLANK_SLOT", "N/A"))
|
294 |
+
|
295 |
+
updates = {
|
296 |
+
preferences_df_state: new_prefs_df,
|
297 |
+
current_sample_index_state: new_s_idx,
|
298 |
+
domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
|
299 |
+
input_bg_image_display: bg,
|
300 |
+
input_fg_image_display: fg,
|
301 |
+
current_sample_data_state: new_s_data,
|
302 |
+
displayed_models_info_state: new_disp_info,
|
303 |
+
end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
|
304 |
+
}
|
305 |
+
for i in range(4):
|
306 |
+
updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
|
307 |
+
num_actual_outputs = 0
|
308 |
+
if new_s_data and "output_image_paths" in new_s_data and new_s_data["output_image_paths"]:
|
309 |
+
num_actual_outputs = sum(1 for m_key, _ in new_disp_info if m_key != "BLANK_SLOT" and m_key is not None)
|
310 |
+
updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
|
311 |
+
return updates
|
312 |
+
return vote_action
|
313 |
+
|
314 |
+
for i, btn in enumerate(vote_buttons):
|
315 |
+
btn.click(
|
316 |
+
fn=make_vote_fn(i),
|
317 |
+
inputs=[
|
318 |
+
session_id_state, sample_queue_state, current_sample_index_state,
|
319 |
+
current_sample_data_state, displayed_models_info_state, preferences_df_state
|
320 |
+
],
|
321 |
+
outputs=[
|
322 |
+
preferences_df_state, current_sample_index_state,
|
323 |
+
domain_prompt_info_display,
|
324 |
+
input_bg_image_display, input_fg_image_display,
|
325 |
+
current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
|
326 |
+
*output_image_displays, *vote_buttons
|
327 |
+
]
|
328 |
+
)
|
329 |
+
|
330 |
+
gr.Markdown(config.FOOTER_MESSAGE)
|
331 |
|
332 |
if __name__ == "__main__":
|
333 |
+
if not os.path.exists(config.DATA_FOLDER):
|
334 |
+
print(f"Creating dummy data folder: {config.DATA_FOLDER}")
|
335 |
+
os.makedirs(config.DATA_FOLDER, exist_ok=True)
|
336 |
+
|
337 |
+
dummy_domains = ["Real-Cartoon", "Real-Painting"]
|
338 |
+
dummy_model_keys = list(config.MODEL_OUTPUT_IMAGE_NAMES.keys())
|
339 |
+
|
340 |
+
for domain in dummy_domains:
|
341 |
+
domain_path = os.path.join(config.DATA_FOLDER, domain)
|
342 |
+
os.makedirs(domain_path, exist_ok=True)
|
343 |
+
for i in range(config.SAMPLES_PER_DOMAIN + 2):
|
344 |
+
sample_id = f"sample_{i:03d}"
|
345 |
+
sample_path = os.path.join(domain_path, sample_id)
|
346 |
+
os.makedirs(sample_path, exist_ok=True)
|
347 |
+
|
348 |
+
with open(os.path.join(sample_path, config.PROMPT_FILE_NAME), "w") as f:
|
349 |
+
f.write(f"This is a dummy prompt for {domain} sample {sample_id}.")
|
350 |
+
|
351 |
+
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (0,255,255)]
|
352 |
+
try:
|
353 |
+
img_bg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='gray')
|
354 |
+
img_bg.save(os.path.join(sample_path, config.BACKGROUND_IMAGE_NAME))
|
355 |
+
|
356 |
+
img_fg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='lightgray')
|
357 |
+
img_fg.save(os.path.join(sample_path, config.FOREGROUND_IMAGE_NAME))
|
358 |
+
|
359 |
+
for idx, model_key in enumerate(dummy_model_keys):
|
360 |
+
model_img_name = config.MODEL_OUTPUT_IMAGE_NAMES[model_key]
|
361 |
+
img_model = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color=colors[idx % len(colors)])
|
362 |
+
img_model.save(os.path.join(sample_path, model_img_name))
|
363 |
+
except Exception as e:
|
364 |
+
print(f"Error creating dummy image: {e}")
|
365 |
+
print("Dummy data creation complete.")
|
366 |
+
ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)
|
367 |
+
|
368 |
+
demo.launch()
|
369 |
+
|
370 |
+
import atexit
|
371 |
+
atexit.register(lambda: scheduler.shutdown() if scheduler.running else None)
|
clean_preferences.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datasets
|
3 |
+
import pandas as pd
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
from config import BACKUP_FOLDER, HF_DATASET_REPO_ID, HF_TOKEN, RESULTS_CSV_FILE, CSV_HEADERS
|
7 |
+
|
8 |
+
def main():
|
9 |
+
"""
|
10 |
+
Gets the dataset from HF Hub where preferences are being collected,
|
11 |
+
save it locally to a backup folder with a timestamp.
|
12 |
+
Then creates an empty dataset with the same structure and saves it to the HF Hub.
|
13 |
+
"""
|
14 |
+
print(f"Attempting to load dataset '{HF_DATASET_REPO_ID}' from Hugging Face Hub (file: {RESULTS_CSV_FILE})...")
|
15 |
+
try:
|
16 |
+
# 1. Get the dataset from HF Hub
|
17 |
+
# Ensure the token has write permissions for pushing later.
|
18 |
+
dataset = datasets.load_dataset(HF_DATASET_REPO_ID, data_files=RESULTS_CSV_FILE, token=HF_TOKEN, split='train')
|
19 |
+
print(f"Successfully loaded dataset. It has {len(dataset)} entries.")
|
20 |
+
dataset_df = dataset.to_pandas()
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading dataset from Hugging Face Hub: {e}")
|
23 |
+
print("This could be due to the dataset/file not existing, or token issues.")
|
24 |
+
print("Attempting to proceed by creating an empty structure for backup and remote reset.")
|
25 |
+
# If loading fails, we might still want to try to clear the remote
|
26 |
+
# or at least create an empty local backup structure.
|
27 |
+
dataset_df = pd.DataFrame(columns=CSV_HEADERS) # Use predefined headers
|
28 |
+
|
29 |
+
# 2. Save it locally to a backup folder with a timestamp
|
30 |
+
if not os.path.exists(BACKUP_FOLDER):
|
31 |
+
os.makedirs(BACKUP_FOLDER)
|
32 |
+
print(f"Created backup folder: {BACKUP_FOLDER}")
|
33 |
+
|
34 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
35 |
+
backup_filename = f"preferences_backup_{timestamp}.csv"
|
36 |
+
backup_filepath = os.path.join(BACKUP_FOLDER, backup_filename)
|
37 |
+
|
38 |
+
try:
|
39 |
+
dataset_df.to_csv(backup_filepath, index=False)
|
40 |
+
print(f"Successfully backed up current preferences (or empty structure) to: {backup_filepath}")
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error saving backup to {backup_filepath}: {e}")
|
43 |
+
# Decide if to return or continue to try clearing remote
|
44 |
+
# For now, let's continue to try clearing remote if backup fails
|
45 |
+
|
46 |
+
# 3. Create an empty dataset with the same structure (using config.CSV_HEADERS)
|
47 |
+
print(f"Creating an empty dataset structure using predefined CSV_HEADERS: {CSV_HEADERS}")
|
48 |
+
empty_df = pd.DataFrame(columns=CSV_HEADERS)
|
49 |
+
empty_dataset = datasets.Dataset.from_pandas(empty_df)
|
50 |
+
|
51 |
+
# 4. Save the empty dataset to the HF Hub
|
52 |
+
print(f"Attempting to push the empty dataset to '{HF_DATASET_REPO_ID}' (file: {RESULTS_CSV_FILE}) on Hugging Face Hub...")
|
53 |
+
try:
|
54 |
+
# To push a specific CSV file and overwrite it, we can push a dictionary
|
55 |
+
# where the key is the name of the file in the repo (without .csv extension if that's how load_dataset names splits)
|
56 |
+
# or more robustly, save to a local temp CSV and use that path in push_to_hub.
|
57 |
+
|
58 |
+
# Create a DatasetDict. The key 'train' is a common default split name.
|
59 |
+
# If your dataset on the Hub uses a different split name for this CSV, adjust accordingly.
|
60 |
+
# Or, if RESULTS_CSV_FILE is the exact filename on the hub, that's what we want to replace.
|
61 |
+
dataset_dict_to_push = datasets.DatasetDict({"train": empty_dataset})
|
62 |
+
|
63 |
+
# The push_to_hub for a DatasetDict will typically create Parquet files by default.
|
64 |
+
# To ensure it's a CSV, we might need to save it locally first and then push that file.
|
65 |
+
# However, let's try pushing the DatasetDict directly first, as it might handle CSVs
|
66 |
+
# if the original dataset was loaded as such.
|
67 |
+
# For more direct control over pushing a CSV file:
|
68 |
+
temp_empty_csv_path = "_temp_empty_prefs.csv"
|
69 |
+
empty_df.to_csv(temp_empty_csv_path, index=False)
|
70 |
+
|
71 |
+
# The `push_to_hub` method on a Dataset object itself can be used.
|
72 |
+
# To ensure it overwrites the correct file, it's often best to structure it as a DatasetDict
|
73 |
+
# or manage file uploads more directly if the library offers it for specific file types.
|
74 |
+
|
75 |
+
# Let's use a method that's common for replacing a dataset with a new version from a local file.
|
76 |
+
# We'll upload our temporary empty CSV.
|
77 |
+
# This requires the `huggingface_hub` library to be installed and logged in.
|
78 |
+
from huggingface_hub import HfApi
|
79 |
+
api = HfApi(token=os.getenv("HF_HUB_TOKEN", HF_TOKEN))
|
80 |
+
|
81 |
+
api.upload_file(
|
82 |
+
path_or_fileobj=temp_empty_csv_path,
|
83 |
+
path_in_repo=RESULTS_CSV_FILE, # This should be the path to the CSV file in the repo
|
84 |
+
repo_id=HF_DATASET_REPO_ID,
|
85 |
+
repo_type="dataset",
|
86 |
+
commit_message=f"Reset {RESULTS_CSV_FILE} to empty by script"
|
87 |
+
)
|
88 |
+
|
89 |
+
if os.path.exists(temp_empty_csv_path):
|
90 |
+
os.remove(temp_empty_csv_path)
|
91 |
+
|
92 |
+
print(f"Successfully pushed empty dataset to replace {RESULTS_CSV_FILE} in Hugging Face Hub: {HF_DATASET_REPO_ID}")
|
93 |
+
print("The remote dataset CSV should now be empty but retain its structure based on CSV_HEADERS.")
|
94 |
+
print(f"IMPORTANT: The old data (if any) is backed up at {backup_filepath}")
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error pushing empty dataset to Hugging Face Hub: {e}")
|
98 |
+
if os.path.exists(temp_empty_csv_path):
|
99 |
+
os.remove(temp_empty_csv_path)
|
100 |
+
print("The remote dataset might not have been cleared. Please check the Hugging Face Hub.")
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|
config.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for the Gradio User Study App
|
2 |
+
|
3 |
+
# --- File and Folder Names ---
|
4 |
+
DATA_FOLDER = "data" # Main folder containing domain subfolders
|
5 |
+
BACKGROUND_IMAGE_NAME = "input_bg.jpg" # Standard name for background input
|
6 |
+
FOREGROUND_IMAGE_NAME = "input_fg.jpg" # Standard name for foreground input
|
7 |
+
PROMPT_FILE_NAME = "prompt.txt" # Standard name for the prompt file
|
8 |
+
# Names for the output images from different models.
|
9 |
+
# These should be actual filenames present in each sample's folder.
|
10 |
+
MODEL_OUTPUT_IMAGE_NAMES = {
|
11 |
+
"baseline": "cp_bg_fg.jpg",
|
12 |
+
"kv-edit": "kvedit.jpg",
|
13 |
+
"tf-icon": "tf-icon.png",
|
14 |
+
"dit-editor": "alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png",
|
15 |
+
}
|
16 |
+
# Names to display for each model in the UI (can be different from filenames)
|
17 |
+
MODEL_DISPLAY_NAMES = {
|
18 |
+
"baseline": "Model A",
|
19 |
+
"kv-edit": "Model B",
|
20 |
+
"tf-icon": "Model C",
|
21 |
+
"dit-editor": "Model D",
|
22 |
+
}
|
23 |
+
|
24 |
+
# --- Data Collection ---
|
25 |
+
RESULTS_CSV_FILE = "user_preferences.csv"
|
26 |
+
CSV_HEADERS = [
|
27 |
+
"session_id",
|
28 |
+
"timestamp",
|
29 |
+
"domain",
|
30 |
+
"sample_id",
|
31 |
+
"prompt",
|
32 |
+
"input_background",
|
33 |
+
"input_foreground",
|
34 |
+
"displayed_order_model_1", # To store which model was shown in 1st position
|
35 |
+
"displayed_order_model_2", # To store which model was shown in 2nd position
|
36 |
+
"displayed_order_model_3", # To store which model was shown in 3rd position
|
37 |
+
"displayed_order_model_4", # To store which model was shown in 4th position
|
38 |
+
"preferred_model_key", # The key of the preferred model (e.g., "model_a")
|
39 |
+
"preferred_model_filename" # The filename of the preferred image
|
40 |
+
]
|
41 |
+
SAMPLES_PER_DOMAIN = 3 # Number of samples to show from each domain per user session
|
42 |
+
|
43 |
+
# --- Hugging Face Hub ---
|
44 |
+
HF_DATASET_REPO_ID = "matsant01/dit-editor-collected-preferences" # Replace with your actual repo ID
|
45 |
+
HF_TOKEN = None # Set this if your dataset is private, or use HF_HUB_TOKEN env var
|
46 |
+
PUSH_INTERVAL_HOURS = 1 # Interval in hours to push results to the Hub
|
47 |
+
|
48 |
+
# --- UI Configuration ---
|
49 |
+
IMAGE_DISPLAY_SIZE = (300, 300) # (width, height) for displaying images
|
50 |
+
APP_TITLE = "Image Composition User Study"
|
51 |
+
APP_DESCRIPTION = """
|
52 |
+
Please look at the input foreground and background images, and the text prompt used for generation, then choose the composed image that you prefer the most.
|
53 |
+
You consider:
|
54 |
+
* πΈ **subject consistency**: does the subject resemble the one in the foreground image? Or is it just a similar object/animal?
|
55 |
+
* πΌοΈ **background preservation**: is the background image correctly preserved?
|
56 |
+
* π¨ **style blending**: is the subject style correctly adapted to the one of the background?
|
57 |
+
"""
|
58 |
+
FOOTER_MESSAGE = "Thank you for participating!"
|
59 |
+
|
60 |
+
# --- Other ---
|
61 |
+
SESSION_ID_LENGTH = 16 # Length of the randomly generated session ID
|
62 |
+
|
63 |
+
# --- Paths ---
|
64 |
+
BACKUP_FOLDER = "backup"
|
data/Real-Cartoon/sample_0/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/{sample_1/baseline.jpg β Real-Cartoon/sample_0/cp_bg_fg.jpg}
RENAMED
File without changes
|
data/{sample_100 β Real-Cartoon/sample_0}/input_bg.jpg
RENAMED
File without changes
|
data/{sample_154 β Real-Cartoon/sample_0}/input_fg.jpg
RENAMED
File without changes
|
data/{sample_1/input_bg.jpg β Real-Cartoon/sample_0/kvedit.jpg}
RENAMED
File without changes
|
data/Real-Cartoon/sample_0/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of a hamburger, a croissant, a piece of bread and a cup of coffee
|
data/{sample_10 β Real-Cartoon/sample_0}/tf-icon.png
RENAMED
File without changes
|
data/Real-Cartoon/sample_1/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/{sample_10/baseline.jpg β Real-Cartoon/sample_1/cp_bg_fg.jpg}
RENAMED
File without changes
|
data/{sample_101 β Real-Cartoon/sample_1}/input_bg.jpg
RENAMED
File without changes
|
data/{sample_121 β Real-Cartoon/sample_1}/input_fg.jpg
RENAMED
File without changes
|
data/Real-Cartoon/sample_1/kvedit.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_1/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of a muffin, a croissant, a piece of bread and a cup of coffee
|
data/{sample_100 β Real-Cartoon/sample_1}/tf-icon.png
RENAMED
File without changes
|
data/Real-Cartoon/sample_10/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_10/cp_bg_fg.jpg
ADDED
![]() |
Git LFS Details
|
data/{sample_102 β Real-Cartoon/sample_10}/input_bg.jpg
RENAMED
File without changes
|
data/{sample_22 β Real-Cartoon/sample_10}/input_fg.jpg
RENAMED
File without changes
|
data/Real-Cartoon/sample_10/kvedit.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_10/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of a shopping mall in the distance
|
data/{sample_101 β Real-Cartoon/sample_10}/tf-icon.png
RENAMED
File without changes
|
data/Real-Cartoon/sample_11/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_11/cp_bg_fg.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_11/input_bg.jpg
ADDED
![]() |
Git LFS Details
|
data/{sample_131 β Real-Cartoon/sample_11}/input_fg.jpg
RENAMED
File without changes
|
data/Real-Cartoon/sample_11/kvedit.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_11/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of a panda in the forest
|
data/{sample_1 β Real-Cartoon/sample_11}/tf-icon.png
RENAMED
File without changes
|
data/Real-Cartoon/sample_12/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/{sample_213/tf-icon.png β Real-Cartoon/sample_12/cp_bg_fg.jpg}
RENAMED
File without changes
|
data/Real-Cartoon/sample_12/input_bg.jpg
ADDED
![]() |
Git LFS Details
|
data/{sample_18 β Real-Cartoon/sample_12}/input_fg.jpg
RENAMED
File without changes
|
data/Real-Cartoon/sample_12/kvedit.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_12/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of buildings in the distance
|
data/Real-Cartoon/sample_12/tf-icon.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_13/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_13/cp_bg_fg.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_13/input_bg.jpg
ADDED
![]() |
Git LFS Details
|
data/{sample_160 β Real-Cartoon/sample_13}/input_fg.jpg
RENAMED
File without changes
|
data/Real-Cartoon/sample_13/kvedit.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_13/prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a cartoon animation of a fox in the forest
|
data/Real-Cartoon/sample_13/tf-icon.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_14/alphanoise0.05_timesteps50_QTrue_KTrue_VTrue_taua0.4_taub0.8_guidance3.0.png
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_14/cp_bg_fg.jpg
ADDED
![]() |
Git LFS Details
|
data/Real-Cartoon/sample_14/input_bg.jpg
ADDED
![]() |
Git LFS Details
|
data/{sample_1 β Real-Cartoon/sample_14}/input_fg.jpg
RENAMED
File without changes
|