Spaces:
Sleeping
Sleeping
File size: 3,109 Bytes
633c3f1 b582880 633c3f1 b582880 509c349 633c3f1 1fcbb38 633c3f1 1fcbb38 633c3f1 b582880 5a41f5d b582880 c9dfe5e b582880 5a41f5d c9dfe5e 5a41f5d b582880 509c349 c03acf1 509c349 633c3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import uvicorn
from contextlib import asynccontextmanager
import sqlite3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from openai import OpenAI
import os
# OpenAI APIクライアントを初期化
client = OpenAI()
client.api_key = os.getenv('OPENAI_API_KEY')
@asynccontextmanager
async def lifespan(app: FastAPI):
print("startup event")
yield
print("shutdown event")
app = FastAPI(lifespan=lifespan)
DATABASE = 'workbook.db'
def get_db():
db = getattr(app.state, '_database', None)
if db is None:
db = app.state._database = sqlite3.connect(DATABASE)
return db
@app.get('/api/chapters')
def get_chapters():
db = get_db()
cursor = db.cursor()
cursor.execute("""
SELECT c.chapter, c.chapter_name, COUNT(q.question) as n_questions
FROM chapter c
LEFT JOIN question q ON c.chapter = q.chapter
GROUP BY c.chapter, c.chapter_name
""")
chapters = cursor.fetchall()
chapter_list = [
{
"chapter_number": row[0],
"chapter_name": row[1],
"n_questions": row[2]
} for row in chapters
]
return JSONResponse(content=chapter_list)
class ChapterRequest(BaseModel):
chapter_number: int
@app.post('/api/questions')
def get_questions_by_chapter(request: ChapterRequest):
db = get_db()
cursor = db.cursor()
cursor.execute("SELECT question, options, answer, explain FROM question WHERE chapter = ? AND kind = '正誤問題'", (request.chapter_number,))
questions = cursor.fetchall()
if not questions:
raise HTTPException(status_code=404, detail="Questions not found for the given chapter number")
question_list = [
{
"question_text": row[0],
"options": row[1],
"answer": row[2],
"explanation": row[3]
} for row in questions
]
return JSONResponse(content=question_list)
class HintRequest(BaseModel):
question_text: str
options: str
answer: str
@app.post('/api/hint')
def generate_hint(request: HintRequest):
prompt = f"設問: {request.question_text}\n選択肢: {request.options}\n正解: {request.answer}\nこの設問に対するヒントを生成してください。なおレスポンスはヒント文章のみとせよ。冒頭に「ヒント:」などの見出しをつけるな。"
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": [{'type': 'text', 'text': prompt}],
},
],
)
response_content = response.choices[0].message.content
return JSONResponse(content={"hint": response_content})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == '__main__':
uvicorn.run(app, host="127.0.0.1", port=8000, log_level="debug") |