File size: 8,176 Bytes
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
 
 
 
 
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f02ac
 
f65c76f
29f02ac
f65c76f
 
29f02ac
f65c76f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging
from pathlib import Path

import matplotlib.pyplot as plt
import torch
from diffusers import StableDiffusionPipeline
from fastcore.all import concat
from huggingface_hub import notebook_login
from PIL import Image
import numpy as np
# from IPython.display import display
from torchvision import transforms as tfms

from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import LMSDiscreteScheduler
from tqdm.auto import tqdm


logging.disable(logging.WARNING)
class ImageGenerator():
    def __init__(self, 
                 g:int=7.5, 
):
        self.latent_images = []
        self.g = g
        self.width = 512
        self.height = 512
        self.generator = torch.manual_seed(32)
        self.bs = 1

    def __repr__(self):
        return f"Image Generator with {self.g=}"

    def load_models(self):
        self.tokenizer    = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",        torch_dtype=torch.float16)
        self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14",        torch_dtype=torch.float16                          ).to("cuda")
        # vae             = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema",             torch_dtype=torch.float16                          ).to("cuda")
        self.vae          = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4",                                    subfolder="vae"         ).to("cuda")
        self.unet         = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4",                             subfolder="unet"        ).to("cuda") #torch_dtype=torch.float16,

    def load_scheduler( self,               
                        beta_start : float=0.00085,
                        beta_end : float=0.012, 
                        beta_schedule : str="scaled_linear", 
                        num_train_timesteps :int=1000):

        self.scheduler = LMSDiscreteScheduler(
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule="scaled_linear",
            num_train_timesteps=num_train_timesteps)

    def load_image(self, filepath:str):
        return Image.open(filepath).resize(size=(self.width,self.height)) 
        #.convert("RGB") # RGB = 3 dimensions, RGBA = 4 dimensions

    def pil_to_latent(self, image: Image) -> torch.Tensor:
        with torch.no_grad():
            np_img = np.transpose( (( np.array(image) / 255)-0.5)*2, (2,0,1)) # turn pil image into np array with values between -1 and 1
            # print(f"{np_img.shape=}") # 4, 64, 64
            
            np_images = np.repeat(np_img[np.newaxis, :, :], self.bs, axis=0) # adding a new dimension and repeating the image for each prompt
            # print(f"{np_images.shape=}")
            
            decoded_latent = torch.from_numpy(np_images).to("cuda").float() #<-- stability-ai vae uses half(), compvis vae uses float?
            # print(f"{decoded_latent.shape=}")
            
            encoded_latent = 0.18215 * self.vae.encode(decoded_latent).latent_dist.sample()
            # print(f"{encoded_latent.shape=}")
    
            return encoded_latent

    def add_noise(self, latent: torch.Tensor, scheduler_steps: int = 10) -> torch.FloatTensor:
        # noise = torch.randn_like(latent) # missing generator parameter
        noise = torch.randn(
                size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
                generator = self.generator).to("cuda")
        timesteps = torch.tensor([self.scheduler.timesteps[scheduler_steps]])
        noisy_latent = self.scheduler.add_noise(latent, noise, timesteps)
        # print(f"add_noise: {timesteps.shape=} {timesteps=} {noisy_latent.shape=}")
        return noisy_latent

    def latent_to_pil(self, latent:torch.Tensor) -> Image:
        # print(f"latent_to_pil {latent.dtype=}")
        with torch.no_grad():
            decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
        # print(f"latent_to_pil {decoded.shape=}")
        image = (decoded/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
        return Image.fromarray((image*255).round().astype("uint8"))    

    def image_grid(self, imgs: [Image]) -> Image:
        w,h = imgs[0].size
        cols = len(imgs)
        grid = Image.new('RGB', size=(cols*w, h))
        for i, img in enumerate(imgs): 
            # print(f"{img.size=}")
            grid.paste(img, box=(i%cols*w, i//cols*h))
        return grid        

    def text_enc(self, prompt:str, maxlen=None) -> torch.Tensor:
        '''tokenize and encode a prompt'''
        if maxlen is None: maxlen = self.tokenizer.model_max_length
        
        inp = self.tokenizer([prompt], padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
        return self.text_encoder(inp.input_ids.to("cuda"))[0].float()

    def tensor_to_pil(self, t:torch.Tensor) -> Image:
        '''transforms a tensor decoded by the vae to a pil image'''
        # print(f"tensor_to_pil {t.shape=} {type(t)=}")
        image = (t/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
        return Image.fromarray((image*255).round().astype("uint8"))

    def latent_callback(self, latent:torch.Tensor) -> None:
        '''store latents in an array so that we can inpect them later.'''
        with torch.no_grad():
            # print(f"cb {latent.shape=}")
            decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
            self.latent_images.append(self.tensor_to_pil(decoded))

    def generate(self, 
                 prompt : str,
                 secondary_prompt: str=None,
                 prompt_mix_ratio : float=0.5,                 
                 negative_prompt="", 
                 seed : int=32, 
                 steps : int=30,
                 start_step_ratio : float=1/5,
                 init_image : str=None, 
                 latent_callback_mod : int=10):
        self.latent_images = []
        if not negative_prompt: negative_prompt = ""

        with torch.no_grad():
            text = self.text_enc(prompt)
            if secondary_prompt:
                sec_prompt_text = self.text_enc(secondary_prompt)
                text = text * prompt_mix_ratio  + sec_prompt_text * ( 1 - prompt_mix_ratio )
            uncond = self.text_enc(negative_prompt * self.bs, text.shape[1])
        emb = torch.cat([uncond, text])
        if seed: torch.manual_seed(seed)
    
        self.scheduler.set_timesteps(steps)
        self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32)
    
        if (init_image == None):
            start_steps = 0
            latents = torch.randn(
                size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
                generator = self.generator)
            latents = latents * self.scheduler.init_noise_sigma
            # print(f"{latents.shape=}")
        else:
            start_steps = int(steps * start_step_ratio) # 0%: too much noise, 100% no noise
            # print(f"{start_steps=}")
            img = self.load_image(init_image)
            latents =self. pil_to_latent(img)
            self.latent_callback(latents)
            latents = self.add_noise(latents, start_steps).to("cuda").float()
            self.latent_callback(latents)

        latents = latents.to("cuda").float() 

        for i,ts in enumerate(tqdm(self.scheduler.timesteps, leave=False)):
            if i >= start_steps:
                inp = self.scheduler.scale_model_input(torch.cat([latents] * 2), ts)
                with torch.no_grad(): 
                    u,t = self.unet(inp, ts, encoder_hidden_states=emb).sample.chunk(2) #todo, grab those with callbacks
                pred = u + self.g*(t-u)
                # pred = u + self.g*(t-u)/torch.norm(t-u)*torch.norm(u)
                latents = self.scheduler.step(pred, ts, latents).prev_sample
    
                if latent_callback_mod and i % latent_callback_mod == 0: 
                    self.latent_callback(latents)

        return self.latent_to_pil(latents), self.latent_images