Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,84 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
""
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("agentica-org/DeepScaleR-1.5B-Preview")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
1 |
+
from threading import Thread
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
4 |
+
import spaces
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("agentica-org/DeepScaleR-1.5B-Preview")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("agentica-org/DeepScaleR-1.5B-Preview", device_map='auto')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
+
def preprocess_messages(history):
|
10 |
+
messages = []
|
11 |
+
|
12 |
+
for idx, (user_msg, model_msg) in enumerate(history):
|
13 |
+
if idx == len(history) - 1 and not messages:
|
14 |
+
messages.append({"role": "user", "content": user_msg})
|
15 |
+
break
|
16 |
+
if user_msg:
|
17 |
+
messages.append({"role": "user", "content": user_msg})
|
18 |
+
if model_msg:
|
19 |
+
messages.append({"role": "assistant", "content": messages})
|
20 |
+
|
21 |
+
return messages
|
22 |
+
|
23 |
+
|
24 |
+
@spaces.GPU()
|
25 |
+
def predict(history, max_length, top_p, temperature):
|
26 |
+
messages = preprocess_messages(history)
|
27 |
+
model_inputs = tokenizer.apply_chat_template(
|
28 |
+
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True
|
29 |
+
).to(model.device)
|
30 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
|
31 |
+
generate_kwargs = {
|
32 |
+
"input_ids": model_inputs["input_ids"],
|
33 |
+
"attention_mask": model_inputs["attention_mask"],
|
34 |
+
"streamer": streamer,
|
35 |
+
"max_new_tokens": max_length,
|
36 |
+
"do_sample": True,
|
37 |
+
"top_p": top_p,
|
38 |
+
"temperature": temperature,
|
39 |
+
"repetition_penalty": 1.2,
|
40 |
+
}
|
41 |
+
|
42 |
+
generate_kwargs['eos_token_id'] = tokenizer.encode("<|user|>")
|
43 |
+
|
44 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
45 |
+
t.start()
|
46 |
+
for new_token in streamer:
|
47 |
+
if new_token:
|
48 |
+
history[-1][1] += new_token
|
49 |
+
yield history
|
50 |
+
|
51 |
+
|
52 |
+
def main():
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.HTML("""<h1 align="center">GLM-Edge-Chat Gradio Demo</h1>""")
|
55 |
+
|
56 |
+
with gr.Row():
|
57 |
+
with gr.Column(scale=3):
|
58 |
+
chatbot = gr.Chatbot()
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column(scale=2):
|
62 |
+
user_input = gr.Textbox(show_label=True, placeholder="Input...", label="User Input")
|
63 |
+
submitBtn = gr.Button("Submit")
|
64 |
+
emptyBtn = gr.Button("Clear History")
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
max_length = gr.Slider(0, 8192, value=4096, step=1.0, label="Maximum length", interactive=True)
|
67 |
+
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
|
68 |
+
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
|
69 |
+
|
70 |
+
# Define functions for button actions
|
71 |
+
def user(query, history):
|
72 |
+
return "", history + [[query, ""]]
|
73 |
+
|
74 |
+
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
|
75 |
+
predict, [chatbot, max_length, top_p, temperature], chatbot
|
76 |
+
)
|
77 |
+
emptyBtn.click(lambda: (None, None), None, [chatbot], queue=False)
|
78 |
+
|
79 |
+
demo.queue()
|
80 |
demo.launch()
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
main()
|