Spaces:
Sleeping
Sleeping
Commit
·
8a0a2d0
1
Parent(s):
e8aa27e
Update app
Browse files
app.py
CHANGED
@@ -1,45 +1,57 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
-
|
|
|
4 |
|
5 |
-
pipe = pipeline(model="matteocirca/whisper-small-it")
|
6 |
-
#
|
7 |
-
#
|
8 |
-
|
9 |
-
segments =
|
10 |
|
11 |
def audio2segments(audio,word):
|
12 |
-
global segments
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
ranges = []
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
iface = gr.Interface(
|
36 |
fn=audio2segments,
|
37 |
-
inputs=[gr.Audio(sources=["microphone"], type="filepath"),"text"],
|
38 |
-
outputs="text",
|
39 |
title="Whisper Small Italian",
|
40 |
description="Realtime demo for Italian speech recognition using a fine-tuned Whisper small model.",
|
41 |
)
|
42 |
|
43 |
|
44 |
iface.launch()
|
45 |
-
|
|
|
1 |
+
from transformers import pipeline, WhisperModel
|
2 |
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import string
|
5 |
|
6 |
+
pipe = pipeline(model="matteocirca/whisper-small-it",return_timestamps="word")
|
7 |
+
#model = WhisperModel.from_pretrained("matteocirca/whisper-small-it")
|
8 |
+
#pipe = pipeline(model="openai/whisper-small",return_timestamps="word")
|
9 |
+
current_audio = None
|
10 |
+
segments = {}
|
11 |
|
12 |
def audio2segments(audio,word):
|
13 |
+
global segments,current_audio
|
14 |
+
|
15 |
+
if audio != current_audio or current_audio == None:
|
16 |
+
segments = pipe(audio)
|
17 |
+
current_audio = audio
|
18 |
+
if not word:
|
19 |
+
if current_audio != None:
|
20 |
+
return segments["text"],"<html><h1>No Word inserted!</h1></html>"
|
21 |
+
else:
|
22 |
+
return "","<html><h1>No Word inserted!</h1></html>"
|
23 |
+
df = pd.DataFrame(columns=["Occurrence n","Starting TimeStamp","Ending TimeStamp"])
|
24 |
+
|
25 |
+
if word:
|
26 |
+
ranges_list = []
|
27 |
ranges = []
|
28 |
+
print(segments)
|
29 |
+
|
30 |
+
for w in segments['chunks']:
|
31 |
+
if word == w["text"].translate(str.maketrans('', '', string.punctuation)).replace(" ","").lower() :
|
32 |
+
ranges_list.append(w["timestamp"])
|
33 |
+
res = "<table><thead><tr><th>Occurrence n°</th><th>Start</th><th>End</th></tr></thead><tbody>"
|
34 |
+
|
35 |
+
|
36 |
+
for i,r in enumerate(ranges_list):
|
37 |
+
#ranges_list.append({"Occurrence n":i,"Starting TimeStamp":r[0],"Ending TimeStamp":r[1]})
|
38 |
+
res += f"<tr><td>{i}</td><td>{r[0]}</td><td>{r[1]}</td></tr>"
|
39 |
+
|
40 |
+
res+=" </tbody></table>"
|
41 |
+
print(res)
|
42 |
+
return segments["text"],res
|
43 |
+
|
44 |
+
def clear():
|
45 |
+
segments = {}
|
46 |
+
|
47 |
|
48 |
iface = gr.Interface(
|
49 |
fn=audio2segments,
|
50 |
+
inputs=[gr.Audio(sources=["upload","microphone"], type="filepath"),"text"],
|
51 |
+
outputs=["text","html"],
|
52 |
title="Whisper Small Italian",
|
53 |
description="Realtime demo for Italian speech recognition using a fine-tuned Whisper small model.",
|
54 |
)
|
55 |
|
56 |
|
57 |
iface.launch()
|
|