Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from pathlib import Path | |
import argparse | |
import shutil | |
from train_dreambooth import run_training | |
from convertosd import convert | |
from PIL import Image | |
from slugify import slugify | |
import requests | |
import torch | |
import zipfile | |
import urllib.parse | |
import gc | |
from diffusers import StableDiffusionPipeline | |
from huggingface_hub import snapshot_download | |
css = ''' | |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} | |
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} | |
#component-4, #component-3, #component-10{min-height: 0} | |
''' | |
maximum_concepts = 3 | |
#Pre download the files even if we don't use it here | |
model_to_load = snapshot_download(repo_id="multimodalart/sd-fine-tunable") | |
safety_checker = snapshot_download(repo_id="multimodalart/sd-sc") | |
def zipdir(path, ziph): | |
# ziph is zipfile handle | |
for root, dirs, files in os.walk(path): | |
for file in files: | |
ziph.write(os.path.join(root, file), | |
os.path.relpath(os.path.join(root, file), | |
os.path.join(path, '..'))) | |
def swap_text(option): | |
mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:" | |
if(option == "object"): | |
instance_prompt_example = "cttoy" | |
freeze_for = 50 | |
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] | |
elif(option == "person"): | |
instance_prompt_example = "julcto" | |
freeze_for = 100 | |
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] | |
elif(option == "style"): | |
instance_prompt_example = "trsldamrl" | |
freeze_for = 10 | |
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''<img src="file/trsl_style.png" />''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] | |
def count_files(*inputs): | |
file_counter = 0 | |
concept_counter = 0 | |
for i, input in enumerate(inputs): | |
if(i < maximum_concepts-1): | |
files = inputs[i] | |
if(files): | |
concept_counter+=1 | |
file_counter+=len(files) | |
uses_custom = inputs[-1] | |
type_of_thing = inputs[-4] | |
if(uses_custom): | |
Training_Steps = int(inputs[-3]) | |
else: | |
if(type_of_thing == "person"): | |
Training_Steps = file_counter*200*2 | |
else: | |
Training_Steps = file_counter*200 | |
return(gr.update(visible=True, value=f"You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. This should take around {round(Training_Steps/1.5, 2)} seconds, or {round((Training_Steps/1.5)/3600, 2)} hours. As a reminder, the T4 GPU costs US$0.60 for 1h. Once training is over, don't forget to swap the hardware back to CPU.")) | |
def train(*inputs): | |
torch.cuda.empty_cache() | |
if 'pipe' in globals(): | |
del pipe | |
gc.collect() | |
if "IS_SHARED_UI" in os.environ: | |
raise gr.Error("This Space only works in duplicated instances") | |
if os.path.exists("output_model"): shutil.rmtree('output_model') | |
if os.path.exists("instance_images"): shutil.rmtree('instance_images') | |
if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip") | |
if os.path.exists("model.ckpt"): os.remove("model.ckpt") | |
file_counter = 0 | |
for i, input in enumerate(inputs): | |
if(i < maximum_concepts-1): | |
if(input): | |
os.makedirs('instance_images',exist_ok=True) | |
files = inputs[i+(maximum_concepts*2)] | |
prompt = inputs[i+maximum_concepts] | |
if(prompt == "" or prompt == None): | |
raise gr.Error("You forgot to define your concept prompt") | |
for j, file_temp in enumerate(files): | |
file = Image.open(file_temp.name) | |
width, height = file.size | |
side_length = min(width, height) | |
left = (width - side_length)/2 | |
top = (height - side_length)/2 | |
right = (width + side_length)/2 | |
bottom = (height + side_length)/2 | |
image = file.crop((left, top, right, bottom)) | |
image = image.resize((512, 512)) | |
extension = file_temp.name.split(".")[1] | |
image = image.convert('RGB') | |
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100) | |
file_counter += 1 | |
os.makedirs('output_model',exist_ok=True) | |
uses_custom = inputs[-1] | |
type_of_thing = inputs[-4] | |
if(uses_custom): | |
Training_Steps = int(inputs[-3]) | |
Train_text_encoder_for = int(inputs[-2]) | |
else: | |
Training_Steps = file_counter*200 | |
if(type_of_thing == "object"): | |
Train_text_encoder_for=30 | |
elif(type_of_thing == "person"): | |
Train_text_encoder_for=60 | |
elif(type_of_thing == "style"): | |
Train_text_encoder_for=15 | |
class_data_dir = None | |
stptxt = int((Training_Steps*Train_text_encoder_for)/100) | |
args_general = argparse.Namespace( | |
image_captions_filename = True, | |
train_text_encoder = True, | |
stop_text_encoder_training = stptxt, | |
save_n_steps = 0, | |
pretrained_model_name_or_path = model_to_load, | |
instance_data_dir="instance_images", | |
class_data_dir=class_data_dir, | |
output_dir="output_model", | |
instance_prompt="", | |
seed=42, | |
resolution=512, | |
mixed_precision="fp16", | |
train_batch_size=1, | |
gradient_accumulation_steps=1, | |
use_8bit_adam=True, | |
learning_rate=2e-6, | |
lr_scheduler="polynomial", | |
lr_warmup_steps = 0, | |
max_train_steps=Training_Steps, | |
) | |
print("Starting training...") | |
run_training(args_general) | |
gc.collect() | |
torch.cuda.empty_cache() | |
print("Adding Safety Checker to the model...") | |
shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor") | |
shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker") | |
shutil.copy(f"model_index.json", "output_model/model_index.json") | |
print("Zipping model file...") | |
with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf: | |
zipdir('output_model/', zipf) | |
print("Training completed!") | |
return [gr.update(visible=True, value=["diffusers_model.zip"]), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)] | |
def generate(prompt): | |
torch.cuda.empty_cache() | |
from diffusers import StableDiffusionPipeline | |
global pipe | |
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
image = pipe(prompt).images[0] | |
return(image) | |
def push(model_name, where_to_upload, hf_token): | |
if(not os.path.exists("model.ckpt")): | |
convert("output_model", "model.ckpt") | |
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd | |
from huggingface_hub import create_repo | |
model_name_slug = slugify(model_name) | |
api = HfApi() | |
your_username = api.whoami(token=hf_token)["name"] | |
if(where_to_upload == "My personal profile"): | |
model_id = f"{your_username}/{model_name_slug}" | |
else: | |
model_id = f"sd-dreambooth-library/{model_name_slug}" | |
headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"} | |
response = requests.post("https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", headers=headers) | |
images_upload = os.listdir("instance_images") | |
image_string = "" | |
instance_prompt_list = [] | |
previous_instance_prompt = '' | |
for i, image in enumerate(images_upload): | |
instance_prompt = image.split("_")[0] | |
if(instance_prompt != previous_instance_prompt): | |
title_instance_prompt_string = instance_prompt | |
instance_prompt_list.append(instance_prompt) | |
else: | |
title_instance_prompt_string = '' | |
previous_instance_prompt = instance_prompt | |
image_string = f'''{title_instance_prompt_string} (use that on your prompt) | |
{image_string}![{instance_prompt} {i}](https://huggingface.co/{model_id}/resolve/main/concept_images/{urllib.parse.quote(image)})''' | |
readme_text = f'''--- | |
license: creativeml-openrail-m | |
tags: | |
- text-to-image | |
--- | |
### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) | |
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! | |
Sample pictures of: | |
{image_string} | |
''' | |
#Save the readme to a file | |
readme_file = open("model.README.md", "w") | |
readme_file.write(readme_text) | |
readme_file.close() | |
#Save the token identifier to a file | |
text_file = open("token_identifier.txt", "w") | |
text_file.write(', '.join(instance_prompt_list)) | |
text_file.close() | |
create_repo(model_id,private=True, token=hf_token) | |
operations = [ | |
CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"), | |
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="model.README.md"), | |
CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt") | |
] | |
api.create_commit( | |
repo_id=model_id, | |
operations=operations, | |
commit_message=f"Upload the model {model_name}", | |
token=hf_token | |
) | |
api.upload_folder( | |
folder_path="output_model", | |
repo_id=model_id, | |
token=hf_token | |
) | |
api.upload_folder( | |
folder_path="instance_images", | |
path_in_repo="concept_images", | |
repo_id=model_id, | |
token=hf_token | |
) | |
return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])] | |
def convert_to_ckpt(): | |
convert("output_model", "model.ckpt") | |
return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"]) | |
with gr.Blocks(css=css) as demo: | |
with gr.Box(): | |
if "IS_SHARED_UI" in os.environ: | |
gr.HTML(''' | |
<div class="gr-prose" style="max-width: 80%"> | |
<h2>Attention - This Space doesn't work in this shared UI</h2> | |
<p>For it to work, you have to duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train a model with less than 100 images using default settings!</p> | |
<p>Please, duplicate this Space, then go to the Settings tab and select a T4 instance.</p> | |
<img class="instruction" src="file/duplicate.png"> | |
<img class="arrow" src="file/arrow.png" /> | |
</div> | |
''') | |
else: | |
gr.HTML(f''' | |
<div class="gr-prose" style="max-width: 80%"> | |
<h2>You have successfully duplicated the Dreambooth Training Space</h2> | |
<p>If you haven't already, <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">attribute a T4 GPU to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when you turn it off.</p> | |
</div> | |
''') | |
gr.Markdown("# Dreambooth training") | |
gr.Markdown("Customize Stable Diffusion by giving it a few examples. You can train up to three concepts by providing examples for each. This Space is based on TheLastBen's [fast-DreamBooth Colab](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) with 🧨 diffusers") | |
with gr.Row(): | |
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True) | |
with gr.Row(): | |
with gr.Column(): | |
thing_description = gr.Markdown("You are going to train an `object`, please upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use, example:") | |
thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''') | |
things_naming = gr.Markdown("You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `cttoy` here). Images will be automatically cropped to 512x512.") | |
with gr.Column(): | |
file_collection = [] | |
concept_collection = [] | |
buttons_collection = [] | |
delete_collection = [] | |
is_visible = [] | |
row = [None] * maximum_concepts | |
for x in range(maximum_concepts): | |
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4]) | |
if(x == 0): | |
visible = True | |
is_visible.append(gr.State(value=True)) | |
else: | |
visible = False | |
is_visible.append(gr.State(value=False)) | |
file_collection.append(gr.File(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', file_count="multiple", interactive=True, visible=visible)) | |
with gr.Column(visible=visible) as row[x]: | |
concept_collection.append(gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt - use a unique, made up word to avoid collisions''')) | |
with gr.Row(): | |
if(x < maximum_concepts-1): | |
buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible)) | |
if(x > 0): | |
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept")) | |
counter_add = 1 | |
for button in buttons_collection: | |
if(counter_add < len(buttons_collection)): | |
button.click(lambda: | |
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None], | |
None, | |
[row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]], queue=False) | |
else: | |
button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False) | |
counter_add += 1 | |
counter_delete = 1 | |
for delete_button in delete_collection: | |
if(counter_delete < len(delete_collection)+1): | |
delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False) | |
counter_delete += 1 | |
with gr.Accordion("Custom Settings", open=False): | |
swap_auto_calculated = gr.Checkbox(label="Use custom settings") | |
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.") | |
steps = gr.Number(label="How many steps", value=800) | |
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30) | |
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder], queue=False) | |
training_summary = gr.Textbox("", visible=False, label="Training Summary") | |
steps.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False) | |
perc_txt_encoder.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False) | |
for file in file_collection: | |
file.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False) | |
train_btn = gr.Button("Start Training") | |
completed_training = gr.Markdown("# ✅ Training completed", visible=False) | |
with gr.Row(): | |
with gr.Box(visible=False) as try_your_model: | |
gr.Markdown("## Try your model") | |
prompt = gr.Textbox(label="Type your prompt") | |
result_image = gr.Image() | |
generate_button = gr.Button("Generate Image") | |
with gr.Box(visible=False) as push_to_hub: | |
gr.Markdown("## Push to Hugging Face Hub") | |
model_name = gr.Textbox(label="Name of your model", placeholder="Tarsila do Amaral Style") | |
where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to") | |
gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.") | |
hf_token = gr.Textbox(label="Hugging Face Write Token") | |
push_button = gr.Button("Push to the Hub") | |
result = gr.File(label="Download the uploaded models in the diffusers format", visible=True) | |
success_message_upload = gr.Markdown(visible=False) | |
convert_button = gr.Button("Convert to CKPT", visible=False) | |
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result, try_your_model, push_to_hub, convert_button, completed_training]) | |
generate_button.click(fn=generate, inputs=prompt, outputs=result_image) | |
push_button.click(fn=push, inputs=[model_name, where_to_upload, hf_token], outputs=[success_message_upload, result]) | |
convert_button.click(fn=convert_to_ckpt, inputs=[], outputs=result) | |
demo.launch(debug=True) |