import gradio as gr import os from pathlib import Path import argparse import shutil from train_dreambooth import run_training from convertosd import convert from PIL import Image from slugify import slugify import requests import torch import zipfile import urllib.parse from diffusers import StableDiffusionPipeline css = ''' .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} #component-4, #component-3, #component-10{min-height: 0} ''' model_to_load = "multimodalart/sd-fine-tunable" maximum_concepts = 3 #Pre download the files even if we don't use it here StableDiffusionPipeline.from_pretrained(model_to_load) def zipdir(path, ziph): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(path, '..'))) def swap_text(option): mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:" if(option == "object"): instance_prompt_example = "cttoy" freeze_for = 50 return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] elif(option == "person"): instance_prompt_example = "julcto" freeze_for = 100 return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] elif(option == "style"): instance_prompt_example = "trsldamrl" freeze_for = 10 return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] def count_files(*inputs): file_counter = 0 concept_counter = 0 for i, input in enumerate(inputs): if(i < maximum_concepts-1): files = inputs[i] if(files): concept_counter+=1 file_counter+=len(files) uses_custom = inputs[-1] type_of_thing = inputs[-4] if(uses_custom): Training_Steps = int(inputs[-3]) else: if(type_of_thing == "person"): Training_Steps = file_counter*200*2 else: Training_Steps = file_counter*200 return(gr.update(visible=True, value=f"You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. This should take around {round(Training_Steps/1.5, 2)} seconds, or {round((Training_Steps/1.5)/3600, 2)} hours. As a reminder, the T4 GPU costs US$0.60 for 1h. Once training is over, don't forget to swap the hardware back to CPU.")) def train(*inputs): if "IS_SHARED_UI" in os.environ: raise gr.Error("This Space only works in duplicated instances") if os.path.exists("output_model"): shutil.rmtree('output_model') if os.path.exists("instance_images"): shutil.rmtree('instance_images') if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip") if os.path.exists("model.ckpt"): os.remove("model.ckpt") file_counter = 0 for i, input in enumerate(inputs): if(i < maximum_concepts-1): if(input): os.makedirs('instance_images',exist_ok=True) files = inputs[i+(maximum_concepts*2)] prompt = inputs[i+maximum_concepts] if(prompt == "" or prompt == None): raise gr.Error("You forgot to define your concept prompt") for j, file_temp in enumerate(files): file = Image.open(file_temp.name) width, height = file.size side_length = min(width, height) left = (width - side_length)/2 top = (height - side_length)/2 right = (width + side_length)/2 bottom = (height + side_length)/2 image = file.crop((left, top, right, bottom)) image = image.resize((512, 512)) extension = file_temp.name.split(".")[1] image = image.convert('RGB') image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100) file_counter += 1 os.makedirs('output_model',exist_ok=True) uses_custom = inputs[-1] type_of_thing = inputs[-4] if(uses_custom): Training_Steps = int(inputs[-3]) Train_text_encoder_for = int(inputs[-2]) else: Training_Steps = file_counter*200 if(type_of_thing == "object"): Train_text_encoder_for=30 elif(type_of_thing == "person"): Train_text_encoder_for=60 elif(type_of_thing == "style"): Train_text_encoder_for=15 class_data_dir = None stptxt = int((Training_Steps*Train_text_encoder_for)/100) args_general = argparse.Namespace( image_captions_filename = True, train_text_encoder = True, stop_text_encoder_training = stptxt, save_n_steps = 0, pretrained_model_name_or_path = model_to_load, instance_data_dir="instance_images", class_data_dir=class_data_dir, output_dir="output_model", instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps = 0, max_train_steps=Training_Steps, ) run_training(args_general) torch.cuda.empty_cache() #convert("output_model", "model.ckpt") #shutil.rmtree('instance_images') #shutil.make_archive("diffusers_model", 'zip', "output_model") with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf: zipdir('output_model/', zipf) torch.cuda.empty_cache() return [gr.update(visible=True, value=["diffusers_model.zip"]), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)] def generate(prompt): from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16) pipe = pipe.to("cuda") image = pipe(prompt).images[0] return(image) def push(model_name, where_to_upload, hf_token): if(not os.path.exists("model.ckpt")): convert("output_model", "model.ckpt") from huggingface_hub import HfApi, HfFolder, CommitOperationAdd from huggingface_hub import create_repo model_name_slug = slugify(model_name) api = HfApi() your_username = api.whoami(token=hf_token)["name"] if(where_to_upload == "My personal profile"): model_id = f"{your_username}/{model_name_slug}" else: model_id = f"sd-dreambooth-library/{model_name_slug}" headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"} response = requests.post("https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", headers=headers) images_upload = os.listdir("instance_images") image_string = "" instance_prompt_list = [] previous_instance_prompt = '' for i, image in enumerate(images_upload): instance_prompt = image.split("_")[0] if(instance_prompt != previous_instance_prompt): title_instance_prompt_string = instance_prompt instance_prompt_list.append(instance_prompt) else: title_instance_prompt_string = '' previous_instance_prompt = instance_prompt image_string = f'''{title_instance_prompt_string} {image_string}![{instance_prompt} {i}](https://huggingface.co/{model_id}/resolve/main/concept_images/{urllib.parse.quote(image)})''' readme_text = f'''--- license: creativeml-openrail-m tags: - text-to-image --- ### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: {image_string} ''' #Save the readme to a file readme_file = open("README.md", "w") readme_file.write(readme_text) readme_file.close() #Save the token identifier to a file text_file = open("token_identifier.txt", "w") text_file.write(', '.join(instance_prompt_list)) text_file.close() create_repo(model_id,private=True, token=hf_token) operations = [ CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"), CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"), CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt") ] api.create_commit( repo_id=model_id, operations=operations, commit_message=f"Upload the model {model_name}", token=hf_token ) api.upload_folder( folder_path="output_model", repo_id=model_id, token=hf_token ) api.upload_folder( folder_path="instance_images", path_in_repo="concept_images", repo_id=model_id, token=hf_token ) return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])] def convert_to_ckpt(): convert("output_model", "model.ckpt") return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"]) with gr.Blocks(css=css) as demo: with gr.Box(): if "IS_SHARED_UI" in os.environ: gr.HTML('''
For it to work, you have to duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0,60/h, it should cost < US$1 to train a model with less than 100 images using default settings!
Please, duplicate this Space, then go to the Settings tab and select a T4 or T4 medium instance.
If you haven't already, attribute a T4 GPU to it (via the Settings tab) and run the training below. You will be billed by the minute from when you activate the GPU until when you turn it off.