import gradio as gr
import os
from pathlib import Path
import argparse
import shutil
from train_dreambooth import run_training
from convertosd import convert
from PIL import Image
from slugify import slugify
import requests
import torch
import zipfile
import tarfile
import urllib.parse
import gc
from diffusers import StableDiffusionPipeline
from huggingface_hub import snapshot_download
is_spaces = True if "SPACE_ID" in os.environ else False
is_shared_ui = True if "IS_SHARED_UI" in os.environ else False
is_gpu_associated = torch.cuda.is_available()
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
maximum_concepts = 3
#Pre download the files
if(is_gpu_associated):
model_v1 = snapshot_download(repo_id="multimodalart/sd-fine-tunable")
model_v2 = snapshot_download(repo_id="stabilityai/stable-diffusion-2")
model_v2_512 = snapshot_download(repo_id="stabilityai/stable-diffusion-2-base")
safety_checker = snapshot_download(repo_id="multimodalart/sd-sc")
model_to_load = model_v1
with zipfile.ZipFile("mix.zip", 'r') as zip_ref:
zip_ref.extractall(".")
def swap_text(option, base):
resize_width = 768 if base == "v2-768" else 512
mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
if(option == "object"):
instance_prompt_example = "cttoy"
freeze_for = 30
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. You can use services like birme for smart cropping. {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to {resize_width}x{resize_width}.", freeze_for, gr.update(visible=False)]
elif(option == "person"):
instance_prompt_example = "julcto"
freeze_for = 70
show_prior_preservation = True if base != "v2-768" else False
if(show_prior_preservation):
prior_preservation_box_update = gr.update(visible=show_prior_preservation)
else:
prior_preservation_box_update = gr.update(visible=show_prior_preservation, value=False)
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. You can use services like birme for smart cropping. {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to {resize_width}x{resize_width}.", freeze_for, prior_preservation_box_update]
elif(option == "style"):
instance_prompt_example = "trsldamrl"
freeze_for = 10
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. You can use services like birme for smart cropping. Name the files with the words you would like {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to {resize_width}x{resize_width}", freeze_for, gr.update(visible=False)]
def swap_base_model(selected_model):
if(is_gpu_associated):
global model_to_load
if(selected_model == "v1-5"):
model_to_load = model_v1
elif(selected_model == "v2-768"):
model_to_load = model_v2
else:
model_to_load = model_v2_512
def count_files(*inputs):
file_counter = 0
concept_counter = 0
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
files = inputs[i]
if(files):
concept_counter+=1
file_counter+=len(files)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
selected_model = inputs[-5]
experimental_faces = inputs[-6]
if(uses_custom):
Training_Steps = int(inputs[-3])
else:
Training_Steps = file_counter*200
if(Training_Steps > 2400):
Training_Steps=2400
elif(Training_Steps < 1400):
Training_Steps=1400
if(is_spaces):
if(selected_model == "v1-5"):
its = 1.1
if(experimental_faces):
its = 1
elif(selected_model == "v2-512"):
its = 0.8
if(experimental_faces):
its = 0.7
elif(selected_model == "v2-768"):
its = 0.5
summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/its, 2)} seconds, or {round((Training_Steps/its)/60, 2)} minutes.
The setup, compression and uploading the model can take up to 20 minutes.
As the T4-Small GPU costs US$0.60 for 1h, the estimated cost for this training is below US${round((((Training_Steps/its)/3600)+0.3+0.1)*0.60, 2)}.
If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.
'''
else:
summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps.
'''
return([gr.update(visible=True), gr.update(visible=True, value=summary_sentence)])
def update_steps(*files_list):
file_counter = 0
for i, files in enumerate(files_list):
if(files):
file_counter+=len(files)
return(gr.update(value=file_counter*200))
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def train(*inputs):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 GPU for this Space")
torch.cuda.empty_cache()
if 'pipe' in globals():
global pipe, pipe_is_set
del pipe
pipe_is_set = False
gc.collect()
if os.path.exists("output_model"): shutil.rmtree('output_model')
if os.path.exists("instance_images"): shutil.rmtree('instance_images')
if os.path.exists("diffusers_model.tar"): os.remove("diffusers_model.tar")
if os.path.exists("model.ckpt"): os.remove("model.ckpt")
if os.path.exists("hastrained.success"): os.remove("hastrained.success")
file_counter = 0
which_model = inputs[-10]
resolution = 512 if which_model != "v2-768" else 768
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
if(input):
os.makedirs('instance_images',exist_ok=True)
files = inputs[i+(maximum_concepts*2)]
prompt = inputs[i+maximum_concepts]
if(prompt == "" or prompt == None):
raise gr.Error("You forgot to define your concept prompt")
for j, file_temp in enumerate(files):
file = Image.open(file_temp.name)
image = pad_image(file)
image = image.resize((resolution, resolution))
extension = file_temp.name.split(".")[1]
image = image.convert('RGB')
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100)
file_counter += 1
os.makedirs('output_model',exist_ok=True)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
remove_attribution_after = inputs[-6]
experimental_face_improvement = inputs[-9]
if(uses_custom):
Training_Steps = int(inputs[-3])
Train_text_encoder_for = int(inputs[-2])
else:
if(type_of_thing == "object"):
Train_text_encoder_for=30
elif(type_of_thing == "style"):
Train_text_encoder_for=15
elif(type_of_thing == "person"):
Train_text_encoder_for=75
Training_Steps = file_counter*200
if(Training_Steps > 2400):
Training_Steps=2400
elif(Training_Steps < 1400):
Training_Steps=1400
stptxt = int((Training_Steps*Train_text_encoder_for)/100)
gradient_checkpointing = False if which_model == "v1-5" else True
cache_latents = True if which_model != "v1-5" else False
if (type_of_thing == "object" or type_of_thing == "style" or (type_of_thing == "person" and not experimental_face_improvement)):
args_general = argparse.Namespace(
image_captions_filename = True,
train_text_encoder = True if stptxt > 0 else False,
stop_text_encoder_training = stptxt,
save_n_steps = 0,
pretrained_model_name_or_path = model_to_load,
instance_data_dir="instance_images",
class_data_dir=None,
output_dir="output_model",
instance_prompt="",
seed=42,
resolution=resolution,
mixed_precision="fp16",
train_batch_size=1,
gradient_accumulation_steps=1,
use_8bit_adam=True,
learning_rate=2e-6,
lr_scheduler="polynomial",
lr_warmup_steps = 0,
max_train_steps=Training_Steps,
gradient_checkpointing=gradient_checkpointing,
cache_latents=cache_latents,
)
print("Starting single training...")
lock_file = open("intraining.lock", "w")
lock_file.close()
run_training(args_general)
else:
args_general = argparse.Namespace(
image_captions_filename = True,
train_text_encoder = True if stptxt > 0 else False,
stop_text_encoder_training = stptxt,
save_n_steps = 0,
pretrained_model_name_or_path = model_to_load,
instance_data_dir="instance_images",
class_data_dir="Mix",
output_dir="output_model",
with_prior_preservation=True,
prior_loss_weight=1.0,
instance_prompt="",
seed=42,
resolution=resolution,
mixed_precision="fp16",
train_batch_size=1,
gradient_accumulation_steps=1,
use_8bit_adam=True,
learning_rate=2e-6,
lr_scheduler="polynomial",
lr_warmup_steps = 0,
max_train_steps=Training_Steps,
num_class_images=200,
gradient_checkpointing=gradient_checkpointing,
cache_latents=cache_latents,
)
print("Starting multi-training...")
lock_file = open("intraining.lock", "w")
lock_file.close()
run_training(args_general)
gc.collect()
torch.cuda.empty_cache()
if(which_model == "v1-5"):
print("Adding Safety Checker to the model...")
shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor")
shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker")
shutil.copy(f"model_index.json", "output_model/model_index.json")
if(not remove_attribution_after):
print("Archiving model file...")
with tarfile.open("diffusers_model.tar", "w") as tar:
tar.add("output_model", arcname=os.path.basename("output_model"))
if os.path.exists("intraining.lock"): os.remove("intraining.lock")
trained_file = open("hastrained.success", "w")
trained_file.close()
print("Training completed!")
return [
gr.update(visible=True, value=["diffusers_model.tar"]), #result
gr.update(visible=True), #try_your_model
gr.update(visible=True), #push_to_hub
gr.update(visible=True), #convert_button
gr.update(visible=False), #training_ongoing
gr.update(visible=True) #completed_training
]
else:
hf_token = inputs[-5]
model_name = inputs[-7]
where_to_upload = inputs[-8]
push(model_name, where_to_upload, hf_token, which_model, True)
hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'flavor': 'cpu-basic'}
requests.post(hardware_url, json = body, headers=headers)
pipe_is_set = False
def generate(prompt, steps):
torch.cuda.empty_cache()
from diffusers import StableDiffusionPipeline
global pipe_is_set
if(not pipe_is_set):
global pipe
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe_is_set = True
image = pipe(prompt, num_inference_steps=steps).images[0]
return(image)
def push(model_name, where_to_upload, hf_token, which_model, comes_from_automated=False):
if(not os.path.exists("model.ckpt")):
convert("output_model", "model.ckpt")
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
from huggingface_hub import create_repo
model_name_slug = slugify(model_name)
api = HfApi()
your_username = api.whoami(token=hf_token)["name"]
if(where_to_upload == "My personal profile"):
model_id = f"{your_username}/{model_name_slug}"
else:
model_id = f"sd-dreambooth-library/{model_name_slug}"
headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"}
response = requests.post("https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", headers=headers)
images_upload = os.listdir("instance_images")
image_string = ""
instance_prompt_list = []
previous_instance_prompt = ''
for i, image in enumerate(images_upload):
instance_prompt = image.split("_")[0]
if(instance_prompt != previous_instance_prompt):
title_instance_prompt_string = instance_prompt
instance_prompt_list.append(instance_prompt)
else:
title_instance_prompt_string = ''
previous_instance_prompt = instance_prompt
image_string = f'''{title_instance_prompt_string} {"(use that on your prompt)" if title_instance_prompt_string != "" else ""}
{image_string}![{instance_prompt} {i}](https://huggingface.co/{model_id}/resolve/main/concept_images/{urllib.parse.quote(image)})'''
readme_text = f'''---
license: creativeml-openrail-m
tags:
- text-to-image
---
### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the {which_model} base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
{image_string}
'''
#Save the readme to a file
readme_file = open("model.README.md", "w")
readme_file.write(readme_text)
readme_file.close()
#Save the token identifier to a file
text_file = open("token_identifier.txt", "w")
text_file.write(', '.join(instance_prompt_list))
text_file.close()
try:
create_repo(model_id,private=True, token=hf_token)
except:
import time
epoch_time = str(int(time.time()))
create_repo(f"{model_id}-{epoch_time}", private=True,token=hf_token)
operations = [
CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"),
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="model.README.md"),
CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt")
]
api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=f"Upload the model {model_name}",
token=hf_token
)
api.upload_folder(
folder_path="output_model",
repo_id=model_id,
token=hf_token
)
api.upload_folder(
folder_path="instance_images",
path_in_repo="concept_images",
repo_id=model_id,
token=hf_token
)
if is_spaces:
if(not comes_from_automated):
extra_message = "Don't forget to remove the GPU attribution after you play with it."
else:
extra_message = "The GPU has been removed automatically as requested, and you can try the model via the model page"
api.create_discussion(repo_id=os.environ['SPACE_ID'], title=f"Your model {model_name} has finished trained from the Dreambooth Train Spaces!", description=f"Your model has been successfully uploaded to: https://huggingface.co/{model_id}. {extra_message}",repo_type="space", token=hf_token)
return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.tar", "model.ckpt"])]
def convert_to_ckpt():
if 'pipe' in globals():
global pipe, pipe_is_set
del pipe
pipe_is_set = False
gc.collect()
convert("output_model", "model.ckpt")
return gr.update(visible=True, value=["diffusers_model.tar", "model.ckpt"])
def check_status(top_description):
if os.path.exists("hastrained.success"):
if is_spaces:
update_top_tag = gr.update(value=f'''
Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub). Once you are done, your model is safe, and you don't want to train a new one, go to the settings page and downgrade your Space to a CPU Basic
Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub).
You closed the tab while your model was training, but it's all good! It is still training right now. You can click the "Open logs" button above here to check the training status. Once training is done, reload this tab to interact with your model
For it to work, you can either run locally or duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train most models using default settings!
Certify that you got a T4. You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.
There's only one step left before you can train your model: attribute a T4 GPU to it (via the Settings tab) and run the training below. Other GPUs are not compatible for now. You will be billed by the minute from when you activate the GPU until when it is turned it off.
Do a pip install requirements-local.txt