Spaces:
Build error
Build error
File size: 34,158 Bytes
ddc92b4 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 6b9687e 30973d8 9de53c6 30973d8 9de53c6 30973d8 9de53c6 30973d8 9de53c6 30973d8 9de53c6 30973d8 9de53c6 30973d8 9de53c6 ddc92b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "275d80538ffc43b198489f7044e31309",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/629 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b3158a617e4940109ab018aa2bfd8a94",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/256M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"All model checkpoint layers were used when initializing TFDistilBertForSequenceClassification.\n",
"\n",
"All the layers of TFDistilBertForSequenceClassification were initialized from the model checkpoint at distilbert-base-uncased-finetuned-sst-2-english.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFDistilBertForSequenceClassification for predictions without further training.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfb51231c3ee4b6a9ab5811331baf689",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/48.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "50e43a0ab3154a16ad623cad2c8637d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/226k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.9997795224189758}]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"classifier = pipeline(\"sentiment-analysis\")\n",
"classifier(\"We are very happy to show you the 🤗 Transformers library.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Take a prompt and generate a line of text"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f80cb24ef764bd192e5d3af79f9f5f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/665 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e64c3a035b54f0c90ca5cc6e341ad21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/475M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"All model checkpoint layers were used when initializing TFGPT2LMHeadModel.\n",
"\n",
"All the layers of TFGPT2LMHeadModel were initialized from the model checkpoint at gpt2.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFGPT2LMHeadModel for predictions without further training.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f442dd13c5747e1811c2199423de0c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/0.99M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a88572455b744b18b99c5bd775944d77",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d31a3e7e53a7422eabfcb61ff5248b8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to 50256 (first `eos_token_id`) to generate sequence\n"
]
},
{
"data": {
"text/plain": [
"[{'generated_text': 'Hello, I\\'m a language model for the world of design,\" explained the senior designer. \"In JavaScript, each line represents a block of code that'},\n",
" {'generated_text': \"Hello, I'm a language modeler extraordinaire. So if you're looking for an elegant and flexible way to express your language or for an\"},\n",
" {'generated_text': \"Hello, I'm a language modeler for Ruby using R, and as a newbie to Rails, I've been very interested in these two techniques\"}]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import pipeline\n",
"generator = pipeline('text-generation', model = 'gpt2')\n",
"generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f140e2c426e04c9ea09061a9796baf30",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/29.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16398286849d4ecaa30d961e2665924a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/411 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91b51416d67b42fda574db1335bb114e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/208k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1a3c1b3cbd24e91b4b455e7bbbcc6d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/426k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "ValueError",
"evalue": "Unrecognized configuration class <class 'transformers.models.distilbert.configuration_distilbert.DistilBertConfig'> for this kind of AutoModel: AutoModelForCausalLM.\nModel type should be one of GPTJConfig, RemBertConfig, RoFormerConfig, BigBirdPegasusConfig, GPTNeoConfig, BigBirdConfig, Speech2Text2Config, BlenderbotSmallConfig, BertGenerationConfig, CamembertConfig, XLMRobertaConfig, PegasusConfig, MarianConfig, MBartConfig, MegatronBertConfig, BartConfig, BlenderbotConfig, ReformerConfig, RobertaConfig, BertConfig, OpenAIGPTConfig, GPT2Config, TransfoXLConfig, XLNetConfig, XLMProphetNetConfig, ProphetNetConfig, XLMConfig, CTRLConfig.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn [6], line 12\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# tokenizer = AutoTokenizer.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# model = AutoModelForCausalLM.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# \"BritishLibraryLabs/bl-books-genre\"\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\u001b[39;00m\n\u001b[1;32m 11\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m AutoTokenizer\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdistilbert-base-cased\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 12\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mAutoModelForCausalLM\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdistilbert-base-cased\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 14\u001b[0m \u001b[38;5;66;03m# generator = pipeline('text-generation', model = \"BritishLibraryLabs/bl-books-genre\")\u001b[39;00m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;66;03m# generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)\u001b[39;00m\n\u001b[1;32m 17\u001b[0m generator \u001b[38;5;241m=\u001b[39m pipeline(task\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtext-generation\u001b[39m\u001b[38;5;124m\"\u001b[39m, model\u001b[38;5;241m=\u001b[39mmodel, tokenizer\u001b[38;5;241m=\u001b[39mtokenizer)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py:420\u001b[0m, in \u001b[0;36m_BaseAutoModelClass.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 418\u001b[0m model_class \u001b[39m=\u001b[39m _get_model_class(config, \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_model_mapping)\n\u001b[1;32m 419\u001b[0m \u001b[39mreturn\u001b[39;00m model_class\u001b[39m.\u001b[39mfrom_pretrained(pretrained_model_name_or_path, \u001b[39m*\u001b[39mmodel_args, config\u001b[39m=\u001b[39mconfig, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m--> 420\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 421\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mUnrecognized configuration class \u001b[39m\u001b[39m{\u001b[39;00mconfig\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m for this kind of AutoModel: \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[1;32m 422\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mModel type should be one of \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m.\u001b[39mjoin(c\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m \u001b[39mfor\u001b[39;00m c \u001b[39min\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_model_mapping\u001b[39m.\u001b[39mkeys())\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 423\u001b[0m )\n",
"\u001b[0;31mValueError\u001b[0m: Unrecognized configuration class <class 'transformers.models.distilbert.configuration_distilbert.DistilBertConfig'> for this kind of AutoModel: AutoModelForCausalLM.\nModel type should be one of GPTJConfig, RemBertConfig, RoFormerConfig, BigBirdPegasusConfig, GPTNeoConfig, BigBirdConfig, Speech2Text2Config, BlenderbotSmallConfig, BertGenerationConfig, CamembertConfig, XLMRobertaConfig, PegasusConfig, MarianConfig, MBartConfig, MegatronBertConfig, BartConfig, BlenderbotConfig, ReformerConfig, RobertaConfig, BertConfig, OpenAIGPTConfig, GPT2Config, TransfoXLConfig, XLNetConfig, XLMProphetNetConfig, ProphetNetConfig, XLMConfig, CTRLConfig."
]
}
],
"source": [
"from transformers import pipeline\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"\n",
"# tokenizer = AutoTokenizer.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\n",
"# model = AutoModelForCausalLM.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\n",
"# \"BritishLibraryLabs/bl-books-genre\"\n",
"\n",
"# tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\n",
"# model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-cased\")\n",
"model = AutoModelForCausalLM.from_pretrained(\"distilbert-base-cased\")\n",
"\n",
"# generator = pipeline('text-generation', model = \"BritishLibraryLabs/bl-books-genre\")\n",
"# generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)\n",
"\n",
"generator = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer)\n",
"generator('something to start with', max_length = 30, num_return_sequences=3)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`\n"
]
},
{
"ename": "ValueError",
"evalue": "num_return_sequences has to be 1, but is 3 when doing greedy search.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn [11], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m generator \u001b[38;5;241m=\u001b[39m pipeline(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtext-generation\u001b[39m\u001b[38;5;124m'\u001b[39m, model \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mroberta-base\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m \u001b[43mgenerator\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHello, I\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mm a language model\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_length\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m30\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_return_sequences\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/pipelines/text_generation.py:150\u001b[0m, in \u001b[0;36mTextGenerationPipeline.__call__\u001b[0;34m(self, text_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\u001b[39mself\u001b[39m, text_inputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 122\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[39m Complete the prompt(s) given as inputs.\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[39m -- The token ids of the generated text.\u001b[39;00m\n\u001b[1;32m 149\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 150\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__call__\u001b[39;49m(text_inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/pipelines/base.py:915\u001b[0m, in \u001b[0;36mPipeline.__call__\u001b[0;34m(self, inputs, num_workers, *args, **kwargs)\u001b[0m\n\u001b[1;32m 913\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_iterator(inputs, num_workers, preprocess_params, forward_params, postprocess_params)\n\u001b[1;32m 914\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 915\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrun_single(inputs, preprocess_params, forward_params, postprocess_params)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/pipelines/base.py:922\u001b[0m, in \u001b[0;36mPipeline.run_single\u001b[0;34m(self, inputs, preprocess_params, forward_params, postprocess_params)\u001b[0m\n\u001b[1;32m 920\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mrun_single\u001b[39m(\u001b[39mself\u001b[39m, inputs, preprocess_params, forward_params, postprocess_params):\n\u001b[1;32m 921\u001b[0m model_inputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpreprocess(inputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mpreprocess_params)\n\u001b[0;32m--> 922\u001b[0m model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mforward(model_inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mforward_params)\n\u001b[1;32m 923\u001b[0m outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpostprocess(model_outputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mpostprocess_params)\n\u001b[1;32m 924\u001b[0m \u001b[39mreturn\u001b[39;00m outputs\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/pipelines/base.py:871\u001b[0m, in \u001b[0;36mPipeline.forward\u001b[0;34m(self, model_inputs, **forward_params)\u001b[0m\n\u001b[1;32m 869\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mno_grad():\n\u001b[1;32m 870\u001b[0m model_inputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_ensure_tensor_on_device(model_inputs, device\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdevice)\n\u001b[0;32m--> 871\u001b[0m model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_forward(model_inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mforward_params)\n\u001b[1;32m 872\u001b[0m model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_ensure_tensor_on_device(model_outputs, device\u001b[39m=\u001b[39mtorch\u001b[39m.\u001b[39mdevice(\u001b[39m\"\u001b[39m\u001b[39mcpu\u001b[39m\u001b[39m\"\u001b[39m))\n\u001b[1;32m 873\u001b[0m \u001b[39melse\u001b[39;00m:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/pipelines/text_generation.py:165\u001b[0m, in \u001b[0;36mTextGenerationPipeline._forward\u001b[0;34m(self, model_inputs, **generate_kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m input_ids \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 164\u001b[0m prompt_text \u001b[39m=\u001b[39m model_inputs\u001b[39m.\u001b[39mpop(\u001b[39m\"\u001b[39m\u001b[39mprompt_text\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 165\u001b[0m generated_sequence \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel\u001b[39m.\u001b[39;49mgenerate(input_ids\u001b[39m=\u001b[39;49minput_ids, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mgenerate_kwargs) \u001b[39m# BS x SL\u001b[39;00m\n\u001b[1;32m 166\u001b[0m \u001b[39mreturn\u001b[39;00m {\u001b[39m\"\u001b[39m\u001b[39mgenerated_sequence\u001b[39m\u001b[39m\"\u001b[39m: generated_sequence, \u001b[39m\"\u001b[39m\u001b[39minput_ids\u001b[39m\u001b[39m\"\u001b[39m: input_ids, \u001b[39m\"\u001b[39m\u001b[39mprompt_text\u001b[39m\u001b[39m\"\u001b[39m: prompt_text}\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/torch/autograd/grad_mode.py:27\u001b[0m, in \u001b[0;36m_DecoratorContextManager.__call__.<locals>.decorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(func)\n\u001b[1;32m 25\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdecorate_context\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 26\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclone():\n\u001b[0;32m---> 27\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/generation_utils.py:984\u001b[0m, in \u001b[0;36mGenerationMixin.generate\u001b[0;34m(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs)\u001b[0m\n\u001b[1;32m 982\u001b[0m \u001b[39mif\u001b[39;00m is_greedy_gen_mode:\n\u001b[1;32m 983\u001b[0m \u001b[39mif\u001b[39;00m num_return_sequences \u001b[39m>\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[0;32m--> 984\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 985\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mnum_return_sequences has to be 1, but is \u001b[39m\u001b[39m{\u001b[39;00mnum_return_sequences\u001b[39m}\u001b[39;00m\u001b[39m when doing greedy search.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 986\u001b[0m )\n\u001b[1;32m 988\u001b[0m \u001b[39m# greedy search\u001b[39;00m\n\u001b[1;32m 989\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mgreedy_search(\n\u001b[1;32m 990\u001b[0m input_ids,\n\u001b[1;32m 991\u001b[0m logits_processor\u001b[39m=\u001b[39mlogits_processor,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mmodel_kwargs,\n\u001b[1;32m 999\u001b[0m )\n",
"\u001b[0;31mValueError\u001b[0m: num_return_sequences has to be 1, but is 3 when doing greedy search."
]
}
],
"source": [
"generator = pipeline('text-generation', model = 'roberta-base')\n",
"generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'[Illustration: \"I saw there something missing from'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from gutenbergdammit.ziputils import retrieve_one\n",
"text = retrieve_one(\"gutenberg-dammit-files-v002.zip\", \"123/12345.txt\")\n",
"# text = retrieve_one(\"gutenberg-dammit-files-v002.zip\", \"123/12345.txt\")\n",
"text[:50]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Author': ['Franklin Delano Roosevelt'],\n",
" 'Author Birth': [1882],\n",
" 'Author Death': [1945],\n",
" 'Author Given': ['Franklin Delano'],\n",
" 'Author Surname': ['Roosevelt'],\n",
" 'Copyright Status': ['Not copyrighted in the United States.'],\n",
" 'Language': ['English'],\n",
" 'LoC Class': ['E740: History: America: Twentieth century'],\n",
" 'Num': '104',\n",
" 'Subject': ['New Deal, 1933-1939',\n",
" 'Presidents -- United States -- Inaugural addresses',\n",
" 'United States -- Politics and government -- 1933-1945'],\n",
" 'Title': [\"Franklin Delano Roosevelt's First Inaugural Address\"],\n",
" 'charset': 'us-ascii',\n",
" 'gd-num-padded': '00104',\n",
" 'gd-path': '001/00104.txt',\n",
" 'href': '/1/0/104/104.zip'}"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from gutenbergdammit.ziputils import loadmetadata\n",
"metadata = loadmetadata(\"gutenberg-dammit-files-v002.zip\")\n",
"metadata[101]\n",
"# ['Essays in the Art of Writing']"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Entertaining Made Easy 108314\n",
"Reading Made Easy for Foreigners - Third Reader 209964\n",
"The Art of Cookery Made Easy and Refined 262990\n",
"Shaving Made Easy\tWhat the Man Who Shaves Ought to Know 44982\n",
"Writing and Drawing Made Easy, Amusing and Instructive\tContaining The Whole Alphabet in all the Characters now\tus'd, Both in Printing and Penmanship 10036\n",
"Etiquette Made Easy 119372\n"
]
}
],
"source": [
"from gutenbergdammit.ziputils import searchandretrieve\n",
"for info, text in searchandretrieve(\"gutenberg-dammit-files-v002.zip\", {'Title': 'Made Easy'}):\n",
" print(info['Title'][0], len(text))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from gutenbergdammit.ziputils import retrieve_one\n",
"# search and retrieve only poetry text\n",
"# fine tune with line-by-line"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# from transformers import AutoModel\n",
"# model_clpt = \"distilbert-base-uncased\"\n",
"# device = torch.device(\"cuda\" id tor)\n",
"import torch\n",
"torch.cuda.is_available()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /var/folders/vr/wjfjpzn1755bvptln8g22f9r0000gn/T/ipykernel_91499/3763141526.py:2: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Use `tf.config.list_physical_devices('GPU')` instead.\n"
]
},
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"tf.test.is_gpu_available()\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tf.config.list_physical_devices('GPU')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tf.config.list_physical_devices('CPU')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Source data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"curl -O http://static.decontextualize.com/gutenberg-poetry-v001.ndjson.gz"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"import gzip, json\n",
"all_lines = []\n",
"for line in gzip.open(\"gutenberg-poetry-v001.ndjson.gz\"):\n",
" all_lines.append(json.loads(line.strip()))"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'s': 'The Song of Hiawatha is based on the legends and stories of', 'gid': '19'}, {'s': 'many North American Indian tribes, but especially those of the', 'gid': '19'}, {'s': 'Ojibway Indians of northern Michigan, Wisconsin, and Minnesota.', 'gid': '19'}, {'s': 'They were collected by Henry Rowe Schoolcraft, the reknowned', 'gid': '19'}, {'s': 'Schoolcraft married Jane, O-bah-bahm-wawa-ge-zhe-go-qua (The', 'gid': '19'}, {'s': 'fur trader, and O-shau-gus-coday-way-qua (The Woman of the Green', 'gid': '19'}, {'s': 'Prairie), who was a daughter of Waub-o-jeeg (The White Fisher),', 'gid': '19'}, {'s': 'who was Chief of the Ojibway tribe at La Pointe, Wisconsin.', 'gid': '19'}, {'s': 'Jane and her mother are credited with having researched,', 'gid': '19'}, {'s': 'authenticated, and compiled much of the material Schoolcraft', 'gid': '19'}]\n"
]
}
],
"source": [
"import random\n",
"random.sample(all_lines, 8)\n",
"\n",
"print(all_lines[0:10])\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Author': ['Henry Rider Haggard'],\n",
" 'Author Birth': [1856],\n",
" 'Author Death': [1925],\n",
" 'Author Given': ['Henry Rider'],\n",
" 'Author Surname': ['Haggard'],\n",
" 'Copyright Status': ['Not copyrighted in the United States.'],\n",
" 'Language': ['English'],\n",
" 'LoC Class': ['PR: Language and Literatures: English literature'],\n",
" 'Num': '2721',\n",
" 'Subject': ['Iceland -- Fiction'],\n",
" 'Title': ['Eric Brighteyes'],\n",
" 'charset': 'iso-8859-1',\n",
" 'gd-num-padded': '02721',\n",
" 'gd-path': '027/02721.txt',\n",
" 'href': '/2/7/2/2721/2721_8.zip'}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from gutenbergdammit.ziputils import loadmetadata\n",
"metadata = loadmetadata(\"gutenberg-dammit-files-v002.zip\")\n",
"metadata[2620]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['The Song of Hiawatha is based on the legends and stories of',\n",
" 'many North American Indian tribes, but especially those of the',\n",
" 'Ojibway Indians of northern Michigan, Wisconsin, and Minnesota.',\n",
" 'They were collected by Henry Rowe Schoolcraft, the reknowned',\n",
" 'Schoolcraft married Jane, O-bah-bahm-wawa-ge-zhe-go-qua (The',\n",
" 'fur trader, and O-shau-gus-coday-way-qua (The Woman of the Green',\n",
" 'Prairie), who was a daughter of Waub-o-jeeg (The White Fisher),',\n",
" 'who was Chief of the Ojibway tribe at La Pointe, Wisconsin.',\n",
" 'Jane and her mother are credited with having researched,',\n",
" 'authenticated, and compiled much of the material Schoolcraft']"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[line['s'] for line in all_lines[0:10]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.6 ('augmented_poetry')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "00664817f4a09ab74dd392ee5a8d12e3606381c26df296db9ea5c334bb5d1b65"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|