ggml-mllm / Dockerfile
matthoffner's picture
Update Dockerfile
bbfd261 verified
raw
history blame
2.3 kB
# Using the specified base image that's suited for llama-cpp-python
# Define the image argument and provide a default value
ARG IMAGE=python:3-slim-bullseye
# Use the image as specified
FROM ${IMAGE}
# Re-declare the ARG after FROM
ARG IMAGE
# Update and upgrade the existing packages
RUN apt-get update && apt-get upgrade -y && apt-get install -y --no-install-recommends \
python3 \
python3-pip \
ninja-build \
build-essential
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings starlette-context
# Perform the conditional installations based on the image
RUN echo "Image: ${IMAGE}" && \
if [ "${IMAGE}" = "python:3-slim-bullseye" ] ; then \
echo "OpenBLAS install:" && \
apt-get install -y --no-install-recommends libopenblas-dev && \
LLAMA_OPENBLAS=1 pip install llama-cpp-python --verbose; \
else \
echo "CuBLAS install:" && \
LLAMA_CUBLAS=1 pip install llama-cpp-python --verbose; \
fi
VOLUME ["/models"]
# Environment variables for model details
ENV MODEL_NAME="llava-1.6-mistral-7b-gguf"
ENV DEFAULT_MODEL_FILE="llava-v1.6-mistral-7b.Q3_K_XS.gguf"
ENV MODEL_USER="cjpais"
ENV DEFAULT_MODEL_BRANCH="main"
ENV DEFAULT_CLIP_MODEL_FILE="mmproj-model-f16.gguf"
ENV MODEL_URL="https://huggingface.co/${MODEL_USER}/${MODEL_NAME}/resolve/${DEFAULT_MODEL_BRANCH}/${DEFAULT_MODEL_FILE}"
ENV CLIP_MODEL_URL="https://huggingface.co/${MODEL_USER}/${MODEL_NAME}/resolve/${DEFAULT_MODEL_BRANCH}/${DEFAULT_CLIP_MODEL_FILE}"
# Set up the working directory
WORKDIR /app
# Ensure curl is available for downloading the models
RUN apt-get update && apt-get install -y curl && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Create a directory for the models
RUN mkdir -p /models
# Download the models
RUN curl -L "${MODEL_URL}" -o /models/${DEFAULT_MODEL_FILE} && \
curl -L "${CLIP_MODEL_URL}" -o /models/${DEFAULT_CLIP_MODEL_FILE}
ENV HOST=0.0.0.0
ENV PORT=8000
# Expose the port the server will run on
EXPOSE 8000
# Command to run the server, using environment variables for model paths
CMD ["python3", "-m", "llama_cpp.server", "--model", "/models/llava-v1.6-mistral-7b.Q3_K_XS.gguf", "--clip_model_path", "/models/mmproj-model-f16.gguf", "--chat_format", "llava-1-5"]