CodeFormer / app_2.py
sczhou's picture
update.
8df8af0
"""
This file is used for deploying hugging face demo:
https://huggingface.co/spaces/sczhou/CodeFormer
"""
import sys
sys.path.append('CodeFormer')
import os
import cv2
import torch
import torch.nn.functional as F
import gradio as gr
from itertools import chain
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY
os.system("pip freeze")
pretrain_model_url = {
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
}
# download weights
if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
# download images
torch.hub.download_url_to_file(
'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
'01.png')
torch.hub.download_url_to_file(
'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
'02.jpg')
torch.hub.download_url_to_file(
'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
'03.jpg')
torch.hub.download_url_to_file(
'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
'04.jpg')
torch.hub.download_url_to_file(
'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
'05.jpg')
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
# set enhancer with RealESRGAN
def set_realesrgan():
half = True if torch.cuda.is_available() else False
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=half,
)
return upsampler
upsampler = set_realesrgan()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()
os.makedirs('output', exist_ok=True)
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
"""Run a single prediction on the model"""
try: # global try
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
detection_model = "retinaface_resnet50"
print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
if background_enhance is None: background_enhance = True
if face_upsample is None: face_upsample = True
if upscale is None: upscale = 2
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
print('\timage size:', img.shape)
upscale = int(upscale) # convert type to int
if upscale > 4: # avoid memory exceeded due to too large upscale
upscale = 4
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
upscale = 2
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
upscale = 1
background_enhance = False
face_upsample = False
face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=device,
)
bg_upsampler = upsampler if background_enhance else None
face_upsampler = upsampler if face_upsample else None
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=5)
if face_helper.is_gray:
print('\tgrayscale input: True')
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
print(f'\tdetect {num_det_faces} faces')
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = codeformer_net(
cropped_face_t, w=codeformer_fidelity, adain=True
)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except RuntimeError as error:
print(f"Failed inference for CodeFormer: {error}")
restored_face = tensor2img(
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_img, draw_box=draw_box
)
# save restored img
save_path = f'output/out.png'
imwrite(restored_img, str(save_path))
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
return restored_img
except Exception as error:
print('Global exception', error)
return None, None
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
<br>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
🤗 Try CodeFormer for improved stable-diffusion generation!<br>
"""
article = r"""
If CodeFormer is helpful, please help to ⭐ the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer)
---
📝 **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2022codeformer,
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
booktitle = {NeurIPS},
year = {2022}
}
```
📋 **License**
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
🤗 **Find Me:**
<style type="text/css">
td {
padding-right: 0px !important;
}
</style>
<table>
<tr>
<td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
<td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
</tr>
</table>
<center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer&ltext=Visitors&color=6dc9aa' alt='visitors'></center>
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Box():
with gr.Column():
input_img = gr.Image(type="filepath", label="Input")
background_enhance = gr.Checkbox(value=True, label="Background_Enhance")
face_enhance = gr.Checkbox(value=True, label="Face_Upsample")
upscale_factor = gr.Number(value=2, label="Rescaling_Factor (up to 4)")
codeformer_fidelity = gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
submit = gr.Button('Enhance Image')
with gr.Column():
output_img = gr.Image(type="numpy", label="Output").style(height='auto')
inps = [input_img, background_enhance, face_enhance, upscale_factor, codeformer_fidelity]
submit.click(fn=inference, inputs=inps, outputs=[output_img])
ex = gr.Examples([
['01.png', True, True, 2, 0.7],
['02.jpg', True, True, 2, 0.7],
['03.jpg', True, True, 2, 0.7],
['04.jpg', True, True, 2, 0.1],
['05.jpg', True, True, 2, 0.1]
],
fn=inference,
inputs=inps,
outputs=[output_img],
cache_examples=True)
gr.Markdown(article)
DEBUG = os.getenv('DEBUG') == '1'
demo.queue(api_open=False, concurrency_count=2, max_size=10)
demo.launch(debug=DEBUG)