Spaces:
Sleeping
Sleeping
File size: 6,825 Bytes
9af1696 95bad29 9af1696 b398e78 9af1696 b398e78 9af1696 b398e78 9af1696 b398e78 9af1696 95bad29 9af1696 b398e78 9af1696 b398e78 9af1696 b398e78 95bad29 b398e78 95bad29 9af1696 b398e78 9af1696 b398e78 9af1696 b398e78 9af1696 b398e78 95bad29 b398e78 95bad29 b398e78 9af1696 b398e78 5858a75 b398e78 95bad29 5858a75 b398e78 95bad29 b398e78 95bad29 b398e78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import pandas as pd
import streamlit as st
from functions import Functions, StreamlitFunctions
from logs import logger
def calculate_salary_parameters():
logger.info("Calculating based on Salary parameters")
st.session_state.type_to_calculate = "salary_parameters"
def calculate_initial_salary_parameter():
logger.info("Calculating based on Desired Salary")
st.session_state.type_to_calculate = "desired_salary"
def calculate_tax_on_current_salary():
logger.info("Calculating Tax on Current Salary")
st.session_state.type_to_calculate = "tax_on_current_salary"
def calculate_tax_on_yearly_salary():
logger.info("Calculating Tax on Yearly Salary")
st.session_state.type_to_calculate = "tax_on_yearly_salary"
StreamlitFunctions.initialize_session_values()
StreamlitFunctions.print_tax_brackets()
StreamlitFunctions.reset_tax_brackets()
StreamlitFunctions.print_tax_on_current_salary()
StreamlitFunctions.reset_tax_on_current_salary()
st.button(
"Calculate Tax on Current Salary",
use_container_width=True,
on_click=calculate_tax_on_current_salary,
)
StreamlitFunctions.print_tax_on_yearly_salary()
StreamlitFunctions.reset_tax_on_yearly_salary()
st.button(
"Calculate Tax on Yearly Salary",
use_container_width=True,
on_click=calculate_tax_on_yearly_salary,
)
StreamlitFunctions.initial_salary_parameter()
StreamlitFunctions.reset_initial_salary_parameter()
st.button(
"Calculate Based on Desired Net Salary",
use_container_width=True,
on_click=calculate_initial_salary_parameter,
)
StreamlitFunctions.print_salary_parameters()
StreamlitFunctions.reset_salary_parameters()
st.button(
"Calculate Based on Salary Parameters",
use_container_width=True,
on_click=calculate_salary_parameters,
)
if st.session_state.type_to_calculate is not None:
if st.session_state.type_to_calculate == "tax_on_current_salary":
initial_desired_net = Functions.calculated_current_salary_after_tax(
st.session_state.tax_on_current_salary, st.session_state.tax_brackets
)
elif st.session_state.type_to_calculate == "tax_on_yearly_salary":
initial_desired_net = Functions.calculated_yearly_salary_after_tax(
st.session_state.tax_on_yearly_salary, st.session_state.tax_brackets
)
elif st.session_state.type_to_calculate == "desired_salary":
initial_desired_net = st.session_state.user_initial_desired_net
elif st.session_state.type_to_calculate == "salary_parameters":
initial_desired_net = Functions.calculated_initial_desired_net(
st.session_state.current_salary,
st.session_state.desired_increment_percentage,
st.session_state.daily_cost_of_travel,
st.session_state.physical_days_per_week,
)
result = Functions.calculate_additional_amount(
initial_desired_net, st.session_state.tax_brackets
)
# Display how initial_desired_net was determined
st.markdown("---")
if st.session_state.type_to_calculate == "tax_on_current_salary":
st.success(
"β
Calculation was done based on the selected value of 'Tax on Current Salary'"
)
summary_df = pd.DataFrame(
{
"Parameter": [
"Current Salary",
"Tax",
"Gross Salary",
],
"Value": [
f"PKR {result['final_net_salary']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['gross_salary_needed']:,.2f}",
],
}
)
elif st.session_state.type_to_calculate == "tax_on_yearly_salary":
st.success(
"β
Calculation was done based on the selected value of 'Tax on Yearly Salary'"
)
result = {key:value*12 for key, value in result.items()}
summary_df = pd.DataFrame(
{
"Parameter": [
"Yearly Salary",
"Yearly Tax",
"Gross Yearly Salary",
],
"Value": [
f"PKR {result['final_net_salary']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['gross_salary_needed']:,.2f}",
],
}
)
elif st.session_state.type_to_calculate == "desired_salary":
st.success(
"β
Calculation was done based on the selected value of 'Final Desired Net Salary'"
)
summary_df = pd.DataFrame(
{
"Parameter": [
"Final Net Salary",
"Tax",
"Gross Salary",
],
"Value": [
f"PKR {result['final_net_salary']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['gross_salary_needed']:,.2f}",
],
}
)
elif st.session_state.type_to_calculate == "salary_parameters":
st.success(
"β
Calculation was done based on the selected values of 'Salary Parameters'"
)
summary_df = pd.DataFrame(
{
"Parameter": [
"Current Salary",
"Desired Increment",
"Daily Travel Cost",
"On-Site Days/Week",
"Gross Salary",
"Tax",
"Final Net Salary",
],
"Value": [
f"PKR {st.session_state.current_salary:,.2f}",
f"{st.session_state.desired_increment_percentage:.2%}",
f"PKR {st.session_state.daily_cost_of_travel:,.2f}",
f"{st.session_state.physical_days_per_week}",
f"PKR {result['gross_salary_needed']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['final_net_salary']:,.2f}",
],
}
)
st.header("Salary Calculation Results")
col1, col2 = st.columns(2)
with col1:
# custom_metric("Initial Desired Net Salary", result['initial_desired_net'])
StreamlitFunctions.custom_metric("Final Net Salary", result["final_net_salary"])
StreamlitFunctions.custom_metric("Tax", result["tax"])
with col2:
# custom_metric("Additional Amount Needed", result['additional_amount'])
StreamlitFunctions.custom_metric(
"Gross Salary Needed", result["gross_salary_needed"]
)
# Display a summary of the calculation
st.subheader("Calculation Summary")
st.data_editor(summary_df, use_container_width=True, hide_index=True)
st.session_state.type_to_calculate = None
|