Spaces:
Sleeping
Sleeping
File size: 4,032 Bytes
9bf16b8 9228783 437ecef b8a30eb 9bf16b8 82f910d 9228783 1b8ba0a 9228783 9bf16b8 9228783 7da3754 2a63a46 5256208 7da3754 5256208 02bbfd9 7da3754 b8a30eb 7da3754 b8a30eb fe44ad8 b8a30eb fe44ad8 b8a30eb fe44ad8 b8a30eb fe44ad8 b8a30eb 9bf16b8 9228783 2a63a46 9228783 9bf16b8 9228783 7da3754 9228783 7da3754 9228783 82f910d 9228783 9bf16b8 9228783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import os
import string
import functools
import re
import numpy as np
import spaces
from PIL import Image, ImageDraw
import re
model_id = "mattraj/curacel-autodamage-1"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)
###### Transformers Inference
@spaces.GPU
def infer(
image: PIL.Image.Image,
text: str,
max_new_tokens: int = 2048
) -> tuple:
inputs = processor(text=text, images=image, return_tensors="pt", padding="longest", do_convert_rgb=True).to(device).to(dtype=model.dtype)
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_length=max_new_tokens
)
result = processor.decode(generated_ids[0], skip_special_tokens=True)
# Placeholder to extract bounding box info from the result (you should replace this with actual bounding box extraction)
bounding_boxes = extract_bounding_boxes(result)
# Draw bounding boxes on the image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Example of drawing bounding boxes (replace with actual coordinates)
for idx, (box, label) in enumerate(bounding_boxes):
color = COLORS[idx % len(COLORS)]
draw.rectangle(box, outline=color, width=3)
draw.text((box[0], box[1]), label, fill=color)
return result, annotated_image
def extract_bounding_boxes(result):
"""
Extract bounding boxes and labels from the model result.
Each bounding box is represented by two locXXXX tags and a label.
Example return: [((x1, y1, x2, y2), "Label")]
"""
bounding_boxes = []
# Regular expression to find <locXXXX> tags and labels
pattern = re.compile(r'<loc(\d{4})><loc(\d{4})>\s*(\S.+?)\s*(?=<loc|\Z)')
matches = pattern.findall(result)
for match in matches:
# Extract x1, y1 from the first loc tag
x1, y1 = int(match[0][:2]), int(match[0][2:])
# Extract x2, y2 from the second loc tag
x2, y2 = int(match[1][:2]), int(match[1][2:])
# Get the label
label = match[2].strip()
# Append the bounding box with the label
bounding_boxes.append(((x1, y1, x2, y2), label))
return bounding_boxes
######## Demo
INTRO_TEXT = """## Curacel Auto Damage demo\n\n
Finetuned from: google/paligemma-3b-pt-448
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
output_image = gr.Image(label="Annotated Image")
chat_btn = gr.Button()
chat_inputs = [image, text_input]
chat_outputs = [text_output, output_image]
chat_btn.click(
fn=infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [["./car-1.png", "detect Front-Windscreen-Damage ; Headlight-Damage ; Major-Rear-Bumper-Dent ; Rear-windscreen-Damage ; RunningBoard-Dent ; Sidemirror-Damage ; Signlight-Damage ; Taillight-Damage ; bonnet-dent ; doorouter-dent ; doorouter-scratch ; fender-dent ; front-bumper-dent ; front-bumper-scratch ; medium-Bodypanel-Dent ; paint-chip ; paint-trace ; pillar-dent ; quaterpanel-dent ; rear-bumper-dent ; rear-bumper-scratch ; roof-dent"]]
gr.Markdown("")
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
#########
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |