File size: 5,679 Bytes
9ec1981
 
 
 
 
 
 
 
 
7149684
9ec1981
 
 
 
 
7149684
 
 
 
 
 
 
50d74bb
 
 
 
 
 
 
 
 
 
7149684
 
 
9ec1981
 
 
 
 
 
 
 
3005818
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7149684
9ec1981
 
 
d4ff3d2
 
2f59867
9ec1981
47a8e15
2f59867
47a8e15
 
 
9ec1981
7149684
 
9ec1981
7149684
 
ab66ee6
7149684
 
 
50d74bb
969a87c
 
56aaa78
969a87c
 
 
50d74bb
e1c3d93
 
 
 
 
 
9ec1981
 
 
 
50d74bb
7149684
9ec1981
 
50d74bb
9ec1981
 
 
 
 
 
 
 
 
 
 
e1c3d93
9ec1981
7149684
9ec1981
 
 
7149684
2c22b89
9ec1981
7149684
56aaa78
 
9ec1981
7149684
 
9ec1981
 
7149684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed
from nltk import ngrams

@st.cache_data
def convert_df(df):
    return df.to_csv()

def normalize_string(string):
    normalized_string = string.lower()
    normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
    
    return normalized_string

def jaccard_similarity(string1, string2,n = 2, normalize=True):
    try:
        if normalize:
           string1,string2= normalize_string(string1),normalize_string(string2)
           
        grams1 = set(ngrams(string1, n))
        grams2 = set(ngrams(string2, n))
        similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
    except:
        similarity=0
        
    return similarity


def extract_website_domain(url):
    parsed_url = urlparse(url)
    return parsed_url.netloc


def google_address(address):
        
    address_number = re.findall(r'\b\d+\b', address)[0]
    address_zip =re.search(r'(\d{5})$', address).group()[:2]
    
    search_query = quote(address)
    url=f'https://www.google.com/search?q={search_query}'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    
    texts_links = []
    for link in soup.find_all("a"):
        t,l=link.get_text(), link.get("href")
        if (l[:11]=='/url?q=http') and (len(t)>20 ):
            texts_links.append((t,l))
    
    
    text = soup.get_text()
    
    texts_links_des=[]
    for i,t_l in enumerate(texts_links):
        start=text.find(texts_links[i][0][:50])
        try:
            end=text.find(texts_links[i+1][0][:50])
        except:
            end=text.find('Related searches')
            
        description=text[start:end]
        texts_links_des.append((t_l[0],t_l[1],description))
    
    df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
    df['Description']=df['Description'].bfill()
    df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})')
    df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
    df['Website'] = df['Link'].apply(extract_website_domain)
    
    df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
    df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
    
    df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
    
    
    df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
    df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
    
    df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
    df['Match Percent']=[jaccard_similarity(address,i)*100 for i in df['Address Output']]
    
    
    # df_final=df[df['Address Output'].notnull()]
    # df_final=df_final[(df_final['Address Output'].str.contains(str(address_number))) & (df_final['Address Output'].str.contains(str(address_zip)))]

    df.insert(0,'Address Input',address)
    
    return df
 
def catch_errors(addresses):
    try: 
        return google_address(addresses)
    except:
        return pd.DataFrame({'Address Input':[addresses]})

@st.cache_data
def process_multiple_address(addresses):
    results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
    return results
    
  

st.set_page_config(layout="wide")

address = st.sidebar.text_input("Address", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Choose a file")
# address_file = st.sidebar.radio('Choose',('Single Address', 'File'))
match_percent = st.sidebar.selectbox('Address Match Percentage At Least:',(70, 80, 90, 100, 0))
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))

if uploaded_file is not None:
    try:
        df = pd.read_csv(uploaded_file)
    except:
        df = pd.read_excel(uploaded_file)
     
    address_cols=list(df.columns[:4])
    df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
    df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
    
    df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
    
    results= process_multiple_address(df['Address All'].values)
    results=pd.concat(results).reset_index(drop=1)
    # results.index=results.index+1

else:    
    results=google_address(address).reset_index(drop=1)
    # results.index=results.index+1

    
results=results[['Address Input', 'Address Output','Match Percent', 'Website','Square Footage', 'Beds', 'Baths', 'Year Built',
 'Link', 'Description', 
      ]]

results=results.query(f"`Match Percent`>={match_percent}")

if return_sq=='Yes':
    results=results.query("`Square Footage`==`Square Footage`").reset_index(drop=1)
    # results.index=results.index+1



with st.container():

    st.dataframe(
        results,
        column_config={
       
            "Link": st.column_config.LinkColumn("Link"),
            'Match Percent': st.column_config.NumberColumn(format='%.2f %%'),
        },
        hide_index=True,
        # height=500,
        # width=500,
    )

csv2 = convert_df(results)
st.download_button(
    label="Download data as CSV",
    data=csv2,
    file_name=f'{address}.csv',
    mime='text/csv')


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)