File size: 4,311 Bytes
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


import streamlit as st
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed


@st.cache_data
def convert_df(df):
    return df.to_csv()

def extract_website_domain(url):
    parsed_url = urlparse(url)
    return parsed_url.netloc


def google_address(address):
        
    address_number = re.findall(r'\b\d+\b', address)[0]
    
    search_query = quote(address)
    url=f'https://www.google.com/search?q={search_query}'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    
    texts_links = []
    for link in soup.find_all("a"):
        t,l=link.get_text(), link.get("href")
        if (l[:11]=='/url?q=http') and (len(t)>20 ):
            texts_links.append((t,l))
    
    
    text = soup.get_text()
    
    texts_links_des=[]
    for i,t_l in enumerate(texts_links):
        start=text.find(texts_links[i][0][:50])
        try:
            end=text.find(texts_links[i+1][0][:50])
        except:
            end=text.find('Related searches')
            
        description=text[start:end]
        texts_links_des.append((t_l[0],t_l[1],description))
    
    df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
    df['Description']=df['Description'].bfill()
    df['Address']=df['Title'].str.extract(r'(.+? \d{5})')
    df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
    df['Website'] = df['Link'].apply(extract_website_domain)
    
    df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.)")[0]
    df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
    
    df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
    df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bath")
    df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
    
    df_final=df[df['Address'].notnull()]
    df_final=df_final[df_final['Address'].str.contains(str(address_number))]
    return df_final
   
def process_multiple_address(addresses):
        results=Parallel(n_jobs=-1, prefer="threads")(delayed(google_address)(i) for i in addresses)
    return results


st.set_page_config(layout="wide")
# col1, col2 = st.columns((2))
address_file = st.sidebar.radio('Choose',('Single Address', 'File'))

address = st.sidebar.text_input("Address", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Choose a file")
# uploaded_file='C:/Users/mritchey/Documents/addresses 100 generated.xlsx'
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))


if address_file == 'File' and not None:
    try:
        df = pd.read_csv(uploaded_file)
    except:
        df = pd.read_excel(uploaded_file)
     
    address_cols=list(df.columns[:4])
    df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
    df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
    
    df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
    
    results= process_multiple_address(df['Address All'].values,trial=True)
    results=pd.concat(results).reset_index(drop=1)
    results.index=results.index+1

else:    
    results=google_address(address).reset_index(drop=1)
    results.index=results.index+1
    results.insert(0,'Address Input',address)
    
    
results=results[['Address Input', 'Address', 'Website','Square Footage', 'Beds', 'Baths', 'Year Built',
 'Link', 'Description', 
      ]]

if return_sq=='Yes':
    results=results.query("`Square Footage`==`Square Footage`").reset_index(drop=1)
    results.index=results.index+1
    
st.dataframe(
    results,
    column_config={
   
        "Link": st.column_config.LinkColumn("Link"),
    },
    hide_index=True,
)

csv2 = convert_df(results)
st.download_button(
    label="Download data as CSV",
    data=csv2,
    file_name=f'{address}.csv',
    mime='text/csv')


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)