File size: 4,713 Bytes
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005818
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ff3d2
 
2f59867
9ec1981
47a8e15
2f59867
47a8e15
 
 
9ec1981
 
 
ab66ee6
 
2c22b89
9ec1981
91e387f
969a87c
 
e1c3d93
969a87c
 
 
9ec1981
e1c3d93
 
 
 
 
 
 
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c3d93
9ec1981
 
 
 
 
 
2c22b89
9ec1981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed


@st.cache_data
def convert_df(df):
    return df.to_csv()

def extract_website_domain(url):
    parsed_url = urlparse(url)
    return parsed_url.netloc


def google_address(address):
        
    address_number = re.findall(r'\b\d+\b', address)[0]
    address_zip =re.search(r'(\d{5})$', address).group()[:2]
    
    search_query = quote(address)
    url=f'https://www.google.com/search?q={search_query}'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    
    texts_links = []
    for link in soup.find_all("a"):
        t,l=link.get_text(), link.get("href")
        if (l[:11]=='/url?q=http') and (len(t)>20 ):
            texts_links.append((t,l))
    
    
    text = soup.get_text()
    
    texts_links_des=[]
    for i,t_l in enumerate(texts_links):
        start=text.find(texts_links[i][0][:50])
        try:
            end=text.find(texts_links[i+1][0][:50])
        except:
            end=text.find('Related searches')
            
        description=text[start:end]
        texts_links_des.append((t_l[0],t_l[1],description))
    
    df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
    df['Description']=df['Description'].bfill()
    df['Address']=df['Title'].str.extract(r'(.+? \d{5})')
    df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
    df['Website'] = df['Link'].apply(extract_website_domain)
    
    df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
    df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
    
    df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
    
    
    df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
    df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
    
    df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
    
    df_final=df[df['Address'].notnull()]
    df_final=df_final[(df_final['Address'].str.contains(str(address_number))) & (df_final['Address'].str.contains(str(address_zip)))]

    df_final.insert(0,'Address Input',address)
    return df_final
    
def catch_errors(addresses):
    try: 
        return google_address(addresses,trial=True)
    except:
        return pd.DataFrame({'Address Input':[addresses]})


def process_multiple_address(addresses):
    results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
    return results
    
  



st.set_page_config(layout="wide")
# col1, col2 = st.columns((2))
address_file = st.sidebar.radio('Choose',('Single Address', 'File'))

address = st.sidebar.text_input("Address", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Choose a file")
# uploaded_file='C:/Users/mritchey/Documents/addresses 100 generated.xlsx'
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))


if address_file == 'File' and not None:
    try:
        df = pd.read_csv(uploaded_file)
    except:
        df = pd.read_excel(uploaded_file)
     
    address_cols=list(df.columns[:4])
    df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
    df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
    
    df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
    
    results= process_multiple_address(df['Address All'].values)
    results=pd.concat(results).reset_index(drop=1)
    results.index=results.index+1

else:    
    results=google_address(address).reset_index(drop=1)
    results.index=results.index+1

    
    
results=results[['Address Input', 'Address', 'Website','Square Footage', 'Beds', 'Baths', 'Year Built',
 'Link', 'Description', 
      ]]

if return_sq=='Yes':
    results=results.query("`Square Footage`==`Square Footage`").reset_index(drop=1)
    results.index=results.index+1
    
st.dataframe(
    results,
    column_config={
   
        "Link": st.column_config.LinkColumn("Link"),
    },
    hide_index=True,
)

csv2 = convert_df(results)
st.download_button(
    label="Download data as CSV",
    data=csv2,
    file_name=f'{address}.csv',
    mime='text/csv')


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)