Spaces:
Sleeping
Sleeping
Commit
·
e802586
1
Parent(s):
db19bb6
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import time
|
|
9 |
from joblib import Parallel, delayed
|
10 |
from nltk import ngrams
|
11 |
|
|
|
12 |
@st.cache_data
|
13 |
def convert_df(df):
|
14 |
return df.to_csv()
|
@@ -19,6 +20,7 @@ def normalize_string(string):
|
|
19 |
|
20 |
return normalized_string
|
21 |
|
|
|
22 |
def jaccard_similarity(string1, string2,n = 2, normalize=True):
|
23 |
try:
|
24 |
if normalize:
|
@@ -30,18 +32,30 @@ def jaccard_similarity(string1, string2,n = 2, normalize=True):
|
|
30 |
except:
|
31 |
similarity=0
|
32 |
|
|
|
|
|
|
|
33 |
return similarity
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def extract_website_domain(url):
|
37 |
parsed_url = urlparse(url)
|
38 |
return parsed_url.netloc
|
39 |
|
40 |
|
41 |
-
def google_address(address):
|
42 |
-
|
43 |
-
|
44 |
-
address_zip =re.search(r'(\d{5})$', address).group()[:2]
|
45 |
|
46 |
search_query = quote(address)
|
47 |
url=f'https://www.google.com/search?q={search_query}'
|
@@ -54,7 +68,6 @@ def google_address(address):
|
|
54 |
if (l[:11]=='/url?q=http') and (len(t)>20 ):
|
55 |
texts_links.append((t,l))
|
56 |
|
57 |
-
|
58 |
text = soup.get_text()
|
59 |
|
60 |
texts_links_des=[]
|
@@ -70,13 +83,16 @@ def google_address(address):
|
|
70 |
|
71 |
df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
|
72 |
df['Description']=df['Description'].bfill()
|
73 |
-
df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})')
|
|
|
74 |
df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
|
75 |
df['Website'] = df['Link'].apply(extract_website_domain)
|
76 |
|
77 |
df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
|
81 |
|
82 |
|
@@ -84,7 +100,8 @@ def google_address(address):
|
|
84 |
df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
|
85 |
|
86 |
df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
|
87 |
-
|
|
|
88 |
df['Google Search Result']=[*range(1,df.shape[0]+1)]
|
89 |
|
90 |
# df_final=df[df['Address Output'].notnull()]
|
@@ -93,7 +110,8 @@ def google_address(address):
|
|
93 |
df.insert(0,'Address Input',address)
|
94 |
|
95 |
return df
|
96 |
-
|
|
|
97 |
def catch_errors(addresses):
|
98 |
try:
|
99 |
return google_address(addresses)
|
@@ -106,12 +124,10 @@ def process_multiple_address(addresses):
|
|
106 |
return results
|
107 |
|
108 |
|
109 |
-
|
110 |
st.set_page_config(layout="wide")
|
111 |
|
112 |
address = st.sidebar.text_input("Single Address:", "190 Pebble Creek Dr Etna, OH 43062")
|
113 |
uploaded_file = st.sidebar.file_uploader("Upload Multiple Addresses:")
|
114 |
-
# address_file = st.sidebar.radio('Choose',('Single Address', 'File'))
|
115 |
match_percent = st.sidebar.selectbox('Address Match Percentage At Least:',(70, 80, 90, 100, 0))
|
116 |
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))
|
117 |
|
@@ -136,7 +152,7 @@ else:
|
|
136 |
# results.index=results.index+1
|
137 |
|
138 |
|
139 |
-
results=results[['Address Input', 'Address Output','Match Percent',
|
140 |
'Link','Google Search Result', 'Description' ]]
|
141 |
results=results.query(f"`Match Percent`>={match_percent}")
|
142 |
|
|
|
9 |
from joblib import Parallel, delayed
|
10 |
from nltk import ngrams
|
11 |
|
12 |
+
|
13 |
@st.cache_data
|
14 |
def convert_df(df):
|
15 |
return df.to_csv()
|
|
|
20 |
|
21 |
return normalized_string
|
22 |
|
23 |
+
|
24 |
def jaccard_similarity(string1, string2,n = 2, normalize=True):
|
25 |
try:
|
26 |
if normalize:
|
|
|
32 |
except:
|
33 |
similarity=0
|
34 |
|
35 |
+
if string2=='did not extract address':
|
36 |
+
similarity=0
|
37 |
+
|
38 |
return similarity
|
39 |
|
40 |
+
def jaccard_sim_split_word_number(string1,string2):
|
41 |
+
numbers1 = ' '.join(re.findall(r'\d+', string1))
|
42 |
+
words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
|
43 |
+
|
44 |
+
numbers2 = ' '.join(re.findall(r'\d+', string2))
|
45 |
+
words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))
|
46 |
+
|
47 |
+
number_similarity=jaccard_similarity(numbers1,numbers2)
|
48 |
+
words_similarity=jaccard_similarity(words1,words2)
|
49 |
+
return (number_similarity+words_similarity)/2
|
50 |
|
51 |
def extract_website_domain(url):
|
52 |
parsed_url = urlparse(url)
|
53 |
return parsed_url.netloc
|
54 |
|
55 |
|
56 |
+
def google_address(address):
|
57 |
+
# address_number = re.findall(r'\b\d+\b', address)[0]
|
58 |
+
# address_zip =re.search(r'(\d{5})$', address).group()[:2]
|
|
|
59 |
|
60 |
search_query = quote(address)
|
61 |
url=f'https://www.google.com/search?q={search_query}'
|
|
|
68 |
if (l[:11]=='/url?q=http') and (len(t)>20 ):
|
69 |
texts_links.append((t,l))
|
70 |
|
|
|
71 |
text = soup.get_text()
|
72 |
|
73 |
texts_links_des=[]
|
|
|
83 |
|
84 |
df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
|
85 |
df['Description']=df['Description'].bfill()
|
86 |
+
df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
|
87 |
+
|
88 |
df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
|
89 |
df['Website'] = df['Link'].apply(extract_website_domain)
|
90 |
|
91 |
df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
|
92 |
+
try:
|
93 |
+
df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
|
94 |
+
except:
|
95 |
+
pass
|
96 |
df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
|
97 |
|
98 |
|
|
|
100 |
df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
|
101 |
|
102 |
df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
|
103 |
+
|
104 |
+
df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
|
105 |
df['Google Search Result']=[*range(1,df.shape[0]+1)]
|
106 |
|
107 |
# df_final=df[df['Address Output'].notnull()]
|
|
|
110 |
df.insert(0,'Address Input',address)
|
111 |
|
112 |
return df
|
113 |
+
|
114 |
+
|
115 |
def catch_errors(addresses):
|
116 |
try:
|
117 |
return google_address(addresses)
|
|
|
124 |
return results
|
125 |
|
126 |
|
|
|
127 |
st.set_page_config(layout="wide")
|
128 |
|
129 |
address = st.sidebar.text_input("Single Address:", "190 Pebble Creek Dr Etna, OH 43062")
|
130 |
uploaded_file = st.sidebar.file_uploader("Upload Multiple Addresses:")
|
|
|
131 |
match_percent = st.sidebar.selectbox('Address Match Percentage At Least:',(70, 80, 90, 100, 0))
|
132 |
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))
|
133 |
|
|
|
152 |
# results.index=results.index+1
|
153 |
|
154 |
|
155 |
+
results=results[['Address Input', 'Address Output','Match Percent','Website','Square Footage', 'Beds', 'Baths', 'Year Built',
|
156 |
'Link','Google Search Result', 'Description' ]]
|
157 |
results=results.query(f"`Match Percent`>={match_percent}")
|
158 |
|