File size: 3,138 Bytes
3671cba
ee259c3
3671cba
eac0454
 
1fb03fe
 
 
c4f7382
eac0454
3671cba
 
697988f
c4f7382
d687e0e
 
 
1fb03fe
eac0454
 
c4f7382
eac0454
1fb03fe
 
 
c4f7382
1fb03fe
c4f7382
 
 
 
1fb03fe
e477662
1fb03fe
c4f7382
1fb03fe
e477662
 
 
 
c4f7382
 
 
 
 
 
 
1fb03fe
 
 
 
c4f7382
 
 
1fb03fe
c4f7382
1fb03fe
c4f7382
 
1fb03fe
 
c4f7382
 
 
 
1fb03fe
c4f7382
 
1fb03fe
c4f7382
 
 
1fb03fe
c4f7382
 
 
 
 
 
 
 
4ccbe5b
c4f7382
 
 
 
 
 
 
 
1fb03fe
 
c4f7382
1fb03fe
4ccbe5b
c4f7382
1fb03fe
c4f7382
 
1fb03fe
c4f7382
 
1fb03fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from fastapi import FastAPI
import uvicorn

import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk

app = FastAPI()


#Endpoints
#Root endpoints
@app.get("/")
def root():
    return {"API": "Hail Docker Data"}


def get_hail_data(lat, lon, start_date, end_date, radius_miles, get_max):

    start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
    end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
    date_years = pd.date_range(start=start_date, end=end_date, freq='M')
    date_range_days = pd.date_range(start_date, end_date)
    years = list(set([d.year for d in date_years]))

    if len(years) == 0:
        years = [pd.Timestamp(start_date).year]

    # Convert Lat Lon to row & col on Array
    transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
    row, col = rasterio.transform.rowcol(transform, lon, lat)

    files = [
        'Data/2023_hail.h5',
        'Data/2022_hail.h5',
        'Data/2021_hail.h5',
        'Data/2020_hail.h5'
    ]

    files_choosen = [i for i in files if any(i for j in years if str(j) in i)]

    # Query and Collect H5 Data
    all_data = []
    all_dates = []
    for file in files_choosen:
        with h5py.File(file, 'r') as f:
            # Get Dates from H5
            dates = f['dates'][:]
            date_idx = np.where((dates >= int(start_date))
                                & (dates <= int(end_date)))[0]

            # Select Data by Date and Radius
            dates = dates[date_idx]
            data = f['hail'][date_idx, row-radius_miles:row +
                             radius_miles+1, col-radius_miles:col+radius_miles+1]

            all_data.append(data)
            all_dates.append(dates)

    data_all = np.vstack(all_data)
    dates_all = np.concatenate(all_dates)

    # Convert to Inches
    data_mat = np.where(data_all < 0, 0, data_all)*0.0393701

    # Get Radius of Data
    disk_mask = np.where(disk(radius_miles) == 1, True, False)
    data_mat = np.where(disk_mask, data_mat, -1).round(3)

    # Process to DataFrame
    # Find Max of Data
    if get_max == True:
        data_max = np.max(data_mat, axis=(1, 2))
        df_data = pd.DataFrame({'Date': dates_all,
                               'Hail_max': data_max})
    else:
        data_all = list(data_mat)
        df_data = pd.DataFrame({'Date': dates_all,
                               'Hail_all': data_mat})

    df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
    df_data = df_data.set_index('Date')

    df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
        columns={'index': 'Date'})
    df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')

    return df_data


@app.get('/Hail_Docker_Data')
async def predict(lat: float, lon: float, start_date: str, end_date: str, radius_miles: int, get_max: bool):

    try:
        results = get_hail_data(lat, lon, start_date,
                                end_date, radius_miles, get_max)
    except:
        results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})

    return results.to_json()