mattritchey's picture
Update main.py
6291600 verified
raw
history blame
3.9 kB
from fastapi import FastAPI
import uvicorn
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed
from nltk import ngrams
from googlesearch import search
app = FastAPI()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "AdressScrap"}
def normalize_string(string):
normalized_string = string.lower()
normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
return normalized_string
def jaccard_similarity(string1, string2,n = 2, normalize=True):
try:
if normalize:
string1,string2= normalize_string(string1),normalize_string(string2)
grams1 = set(ngrams(string1, n))
grams2 = set(ngrams(string2, n))
similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
except:
similarity=0
if string2=='did not extract address':
similarity=0
return similarity
def jaccard_sim_split_word_number(string1,string2):
numbers1 = ' '.join(re.findall(r'\d+', string1))
words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
numbers2 = ' '.join(re.findall(r'\d+', string2))
words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))
number_similarity=jaccard_similarity(numbers1,numbers2)
words_similarity=jaccard_similarity(words1,words2)
return (number_similarity+words_similarity)/2
def extract_website_domain(url):
parsed_url = urlparse(url)
return parsed_url.netloc
def google_address(address):
all_data=[i for i in search(address, ssl_verify=False, advanced=True,
num_results=11)]
df=pd.DataFrame({'Title':[i.title for i in all_data],
'Link':[i.url for i in all_data],
'Description':[i.description for i in all_data],})
df=df.query("Title==Title")
df['Link']=df['Link'].str.replace('/www.','https://www.')
# df['Description']=df['Description'].bfill()
df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
df['Website'] = df['Link'].apply(extract_website_domain)
df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
try:
df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
except:
pass
df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
df['Google Search Result']=[*range(1,df.shape[0]+1)]
# df_final=df[df['Address Output'].notnull()]
# df_final=df_final[(df_final['Address Output'].str.contains(str(address_number))) & (df_final['Address Output'].str.contains(str(address_zip)))]
df.insert(0,'Address Input',address)
return df
@app.get('/AddressScrap')
async def predict(address: str):
try:
results= google_address(addresses)
results=results[['Address Input', 'Address Output','Match Percent','Website','Square Footage', 'Beds', 'Baths', 'Year Built',
'Link','Google Search Result', 'Description' ]]
except:
results= pd.DataFrame({'Address Input':[addresses]})
return results