mattritchey commited on
Commit
1fb03fe
·
verified ·
1 Parent(s): 8e2f79a

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +80 -104
main.py CHANGED
@@ -1,15 +1,14 @@
1
  from fastapi import FastAPI
2
  import uvicorn
3
 
 
 
4
  import pandas as pd
5
  import numpy as np
6
- import requests
7
- from urllib.parse import urlparse, quote
8
- import re
9
- from bs4 import BeautifulSoup
10
- import time
11
- from joblib import Parallel, delayed
12
- from nltk import ngrams
13
 
14
  app = FastAPI()
15
 
@@ -18,124 +17,101 @@ app = FastAPI()
18
  #Root endpoints
19
  @app.get("/")
20
  def root():
21
- return {"API": "Google Address Scrap"}
22
 
23
 
 
24
 
25
- def normalize_string(string):
26
- normalized_string = string.lower()
27
- normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
28
-
29
- return normalized_string
30
-
31
-
32
- def jaccard_similarity(string1, string2,n = 2, normalize=True):
33
  try:
34
- if normalize:
35
- string1,string2= normalize_string(string1),normalize_string(string2)
36
-
37
- grams1 = set(ngrams(string1, n))
38
- grams2 = set(ngrams(string2, n))
39
- similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
40
  except:
41
- similarity=0
 
 
 
42
 
43
- if string2=='did not extract address':
44
- similarity=0
45
-
46
- return similarity
47
-
48
- def jaccard_sim_split_word_number(string1,string2):
49
- numbers1 = ' '.join(re.findall(r'\d+', string1))
50
- words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
51
-
52
- numbers2 = ' '.join(re.findall(r'\d+', string2))
53
- words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))
54
-
55
- number_similarity=jaccard_similarity(numbers1,numbers2)
56
- words_similarity=jaccard_similarity(words1,words2)
57
- return (number_similarity+words_similarity)/2
58
-
59
- def extract_website_domain(url):
60
- parsed_url = urlparse(url)
61
- return parsed_url.netloc
62
 
63
 
64
- def google_address(address):
65
 
66
- search_query = quote(address)
67
- url=f'https://www.google.com/search?q={search_query}'
68
- response = requests.get(url)
69
- soup = BeautifulSoup(response.content, "html.parser")
70
-
71
- texts_links = []
72
- for link in soup.find_all("a"):
73
- t,l=link.get_text(), link.get("href")
74
- if (l[:11]=='/url?q=http') and (len(t)>20 ):
75
- texts_links.append((t,l))
76
 
77
- text = soup.get_text()
78
 
79
- texts_links_des=[]
80
- for i,t_l in enumerate(texts_links):
81
- start=text.find(texts_links[i][0][:50])
82
- try:
83
- end=text.find(texts_links[i+1][0][:50])
84
- except:
85
- end=text.find('Related searches')
86
-
87
- description=text[start:end]
88
- texts_links_des.append((t_l[0],t_l[1],description))
89
 
90
- df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
91
- df['Description']=df['Description'].bfill()
92
- df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
93
 
94
- df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
95
- df['Website'] = df['Link'].apply(extract_website_domain)
 
96
 
97
- df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
98
- try:
99
- df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
100
- except:
101
- pass
102
- df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
103
 
 
104
 
105
- df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
106
- df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
- df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
 
109
 
110
- df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
111
- df['Google Search Result']=[*range(1,df.shape[0]+1)]
112
-
113
- df.insert(0,'Address Input',address)
114
 
115
- return df
116
-
 
117
 
118
- def catch_errors(addresses):
119
- try:
120
- return google_address(addresses)
121
- except:
122
- return pd.DataFrame({'Address Input':[addresses]})
123
-
124
-
125
- def process_multiple_address(addresses):
126
- results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
127
- return results
128
 
 
 
 
 
 
 
129
 
130
- @app.get('/Google_Address_Scrap')
131
- async def predict(address_input: str):
 
 
132
 
133
- address_input_split = address_input.split(';')
134
- results = process_multiple_address(address_input_split)
135
- results = pd.concat(results).reset_index(drop=1)
136
- prediction = results[['Address Input', 'Address Output', 'Match Percent', 'Website', 'Square Footage', 'Beds', 'Baths', 'Year Built',
137
- 'Link', 'Google Search Result', 'Description']]
138
- return prediction.to_json()
139
 
140
-
141
-
 
 
 
 
 
1
  from fastapi import FastAPI
2
  import uvicorn
3
 
4
+ from geopy.extra.rate_limiter import RateLimiter
5
+ from geopy.geocoders import Nominatim
6
  import pandas as pd
7
  import numpy as np
8
+ import pickle
9
+ import rasterio
10
+ import h5py
11
+ from skimage.morphology import disk
 
 
 
12
 
13
  app = FastAPI()
14
 
 
17
  #Root endpoints
18
  @app.get("/")
19
  def root():
20
+ return {"API": "Hail Docker Data"}
21
 
22
 
23
+ def geocode_address(address):
24
 
 
 
 
 
 
 
 
 
25
  try:
26
+ address2 = address.replace(' ', '+').replace(',', '%2C')
27
+ df = pd.read_json(
28
+ f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
29
+ results = df.iloc[:1, 0][0][0]['coordinates']
30
+ lat, lon = results['y'], results['x']
 
31
  except:
32
+ geolocator = Nominatim(user_agent='GTA Lookup')
33
+ geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
34
+ location = geolocator.geocode(address)
35
+ lat, lon = location.latitude, location.longitude
36
 
37
+ return lat, lon
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
 
40
+ def get_hail_data(address, start_date,end_date,radius_miles):
41
 
42
+ start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
43
+ end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
44
+ date_years = pd.date_range(start=start_date, end=end_date, freq='M')
45
+ years = list(set([d.year for d in date_years]))
 
 
 
 
 
 
46
 
 
47
 
48
+ if len(years)==0:
49
+ years=[pd.Timestamp(start_date).year]
 
 
 
 
 
 
 
 
50
 
51
+ # Geocode Address
52
+ lat, lon= geocode_address(address)
 
53
 
54
+ # Convert Lat Lon to row & col on Array
55
+ transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
56
+ row, col = rasterio.transform.rowcol(transform, lon, lat)
57
 
58
+ files = [
59
+ 'Data/2023_hail.h5',
60
+ 'Data/2022_hail.h5',
61
+ 'Data/2021_hail.h5',
62
+ 'Data/2020_hail.h5'
63
+ ]
64
 
65
+ files_choosen=[i for i in files if any(i for j in years if str(j) in i)]
66
 
67
+ # Query and Collect H5 Data
68
+ all_data=[]
69
+ all_dates=[]
70
+ for file in files_choosen:
71
+ with h5py.File(file, 'r') as f:
72
+ # Get Dates from H5
73
+ dates = f['dates'][:]
74
+ date_idx=np.where((dates>=int(start_date)) & (dates<=int(end_date)) )[0]
75
+
76
+ # Select Data by Date and Radius
77
+ dates=dates[date_idx]
78
+ data = f['hail'][date_idx, row-radius_miles:row +
79
+ radius_miles+1, col-radius_miles:col+radius_miles+1]
80
+
81
+ all_data.append(data)
82
+ all_dates.append(dates)
83
 
84
+ data_all=np.vstack(all_data)
85
+ dates_all=np.concatenate(all_dates)
86
 
87
+ # Convert to Inches
88
+ data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
 
 
89
 
90
+ # Get Radius of Data
91
+ disk_mask = np.where(disk(radius_miles)==1,True, False)
92
+ data_mat = np.where(disk_mask, data_mat, -1)
93
 
94
+ # Find Max of Data
95
+ data_max = np.max(data_mat, axis=(1, 2)).round(3)
 
 
 
 
 
 
 
 
96
 
97
+ # Process to DataFrame
98
+ date_range_days = pd.date_range(start_date,end_date)
99
+ df_data=pd.DataFrame({'Date':dates_all,
100
+ 'Hail_max':data_max})
101
+ df_data['Date']=pd.to_datetime(df_data['Date'],format='%Y%m%d')
102
+ df_data=df_data.set_index('Date')
103
 
104
+ df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(columns={'index': 'Date'})
105
+ df_data['Date']=df_data['Date'].dt.strftime('%Y-%m-%d')
106
+ return df_data
107
+
108
 
109
+ @app.get('/Hail_Docker_Data')
110
+ async def predict(address, start_date,end_date, radius_miles):
 
 
 
 
111
 
112
+ try:
113
+ results = get_hail_data(address, start_date,end_date, radius_miles)
114
+ except:
115
+ results=pd.DataFrame({'Date':['error'],'df_data':['error']})
116
+
117
+ return results.to_json()